Midterm 2: Solutions
ECS20 (Spring 2016)

May 18, 2016

Part I: logic

Exercise 1: Smullyan’s island

A very special island is inhabited only by Knights and Knaves. Knights always tell the truth, while
Knaves always lie. You meet two inhabitants: Sally and Claire. You know that one of them is the
Queen of the island. Sally says, “Claire is the Queen and she is a Knave”. Claire says, “Sally is
not the Queen but she is a Knight”. Can you find out if Sally is a Knight or Knave? Can you find
out if Claire is a Knight or Knave? Can you tell me who is the Queen? Explain your answer.

Let us build the table for the possible options for Sally and Claire (both can be a Knight of
a Knave, a Queen or not; only one can be the Queen). We then check the validity of the two
statements, and finally check the consistency of the truth values for those statements with the
nature of Sally and Claire.

Line Sally Claire Sally says Claire says
1 Knight, Queen Knight, not Queen F F
2 Knight, Queen Knave, not Queen F F
3 Knight, not Queen Knight, Queen F T
4 Knight, not Queen Knave, Queen T T
5 Knave, Queen Knight, not Queen F F
6 Knave, Queen, Knave, not Queen F F
7 Knave, not Queen Knight, Queen F F
8 Knave, not Queen Knave, Queen T F

Compatibility:

Line 1: No: Sally would be a Knight who lies

Line 2: No, Sally would be a Knight who lies

Line 3: No, Sally would be a Knight who lies

Line 4: No, Claire would be a Knave who tells the truth

Line 5: No, Claire would be a Knight who lies

Line 6: Yes

Line 7: No, Claire would be a Knight who lies



Line 8:

No, Sally would be a Knave who tells the truth

Therefore Sally and Claire are Knaves, and Sally is the Queen.

Part II: proofs and number theory

Exercise 1

Give a direct proof, an indirect proof and a proof by contradiction of the proposition: if n3 + 1 is
odd, then n is even, where n is a natural number.
This is a problem of showing a conditional p — ¢ is true, where

p:n’

+ 1is odd ¢ : n is even

We will use three different types of proof: direct, indirect, and proof by contradiction

a)

Direct proof: we show directly that p — ¢ is true.

Hypothesis: pis true, n3+1 is odd. Therefore there exists an integer k such that n3+1 = 2k+1,
i.e. n® = 2k. Therefore 2 divides n®. Since 2 is a prime number, according to Euclid’s theorem,
we conclude that 2 divides n, therefore n is even. We have showed that ¢ is true, therefore
p — q is true

Indirect proof: we show that —-¢ — —p is true.

Hypothesis: —q is true, therefore n is odd. There exists an integer k such that n = 2k + 1.
Therefore,

nd+1=2k+1)3+1=8k+12k>+ 6k + 1 +1 = 2(4k> + 6k* + 3k + 1)
Since 4k3 + 6k% + 3k + 1 is integer, n3 + 1 is even.

We have shown that —q — —p is true, therefore p — ¢ is true

Proof by contradiction: we suppose p — ¢ is false
Hypothesis: p — ¢ is false, i.e. p is true and —q is true, namely n3 + 1 is odd and n is odd.

Since n is odd, there exists an integer k such that n = 2k+1. Therefore, n>+1 = (2k+1)3+1 =
8k3 + 12k% + 6k + 14+ 1 = 2(4k> + 6k% + 3k + 1)

Since 4k3 + 6k2 4 3k + 1 is integer, n3 4 1 is even. But we have supposed that n3 4 1 is odd.
We have reached a contradiction. Therefore the hypothesis we made is false, therefore p — ¢
is true.

Exercise 2

Show that for all integers n > 1,n% + 3n? + 2n is divisible by 2 and 3. (Hint: one possibility is to
use Fermat’s little theorem)
Let n be a positive integer strictly greater than 1. Let us use the hint given to us.

a)

Divisibility by 2.

Since 2 is prime, for all n > 1, n? = n[2]. Multiplying the congruence by n, we get n3 = n? =
n[2].



Therefore,
nd+3n2+2n = n+3n+2n[2

6n[2]
0[2]

Therefore n3 4+ 3n? + 2n is divisible by 2.

a) Divisibility by 3.
Since 3 is prime, for all n > 1, n3 = n[3)].

Therefore,

n3+3n24+2n = n+3n% 4 2n[3
= n+2n[3]
= 3n|3]
= 03]

Therefore n? + 3n? + 2n is divisible by 3.

Exercise 3

Show that the sum of any three consecutive perfect cubes is divisible by 9 (Note: a perfect cube is
a number that can be written in the form n® where n is an integer. The three numbers (n — 1)3,
n? and (n+ 1)3are three consecutive perfect cubes. Hint: Start by showing that n® + 2n = 0[3], for
all integer n).

Let us follow the hint. We show first that n® 4+ 2n is a multiple of 3, which is equivalent to
n® 4+ 2n = 0[3], for all integer n. Let n be an integer. Since 3 is a prime number, we can use
Fermat’s little theorem:

n3 = n[3
Therefore
nd+2n = n+2n[3
= 3n[3]
0[3]

Therefore n3 + 2n = 0[3], for all integer n, namely n® + 2n is a multiple of 3.
Let us consider now three consecutive perfect squares: (n — 1)3, n® and (n + 1)3. Their sum
satisfies

S = n—124n3+n+1)3
nd—3n2+3n—14+n°+nd+3n°+3n+1
3n3 + 6n

= 3(n®+2n)



We have showed that n3 + 2n is a multiple of 3: there exits k integer such that n® + 2n = 3k.
Therefore,

S = 3(n®+2n)
= 9%

Therefore S is a multiple of 9.

Exercise 4

Evaluate the remainder of the division of 247 by 13.

Let A = 247, Note first that 473 = 13 x 36 + 5, therefore A = (236)13 x 25.
Since 13 is prime, we can use Fermat’s little theorem, i.e. for all natural number a,

a'® = a[13]
Therefore,

A = (22913 x 2513]
= 236 x 2°[13)
= 2Y[13]

Now we note that 41 = 3 x 13 + 2, therefore 24! = (23)!3 x 22. Therefore:

A = 2413
= (2513 x 2213
= 23 x 2%[13]
= 2°[13]

Since 2° = 32, and 32 =2 x 13 + 6, 2° = 6[13].
Therefore

A = 6[13]

and the remainder of the division of 2473 by 13 is 6.

Part III: sets and functions

Exercise 1
Let A and B be two sets in a domain D. Show that (AN B)U(ANB)U(ANB)=AUB.
Let LHS = (ANB)U(ANB)U(ANB)and RHS = AU B.
Using the distributivity of N and U, we have
(ANB)U(ANB) = AN(BUB)
= AnD
= A



Therefore

LHS = AU(ANB)
(AUA)N(AUB
DN(AuUB
(AUB

= RHS

Therefore the property is true.

Exercise 2

[There was a typo in the midterm: it was written that a and b are real numbers, while they should
be integers... the grading was designed so that no one was penalized by this typo.]

Let a, and b be two strictly positive integers and let z be a real number.. Show that:

-1

Let us define k = L%J and m = L%J By definition of floor, we have the two properties:
k<Z<k+1
and
m< 5 <m+1
Let us multiply the second inequalities by b:
bm < 2 <b(m+1)
We notice that:
k<% and £ < b(m + 1); therefore k < b(m + 1).
k < 2 and bm < . Therefore k and bm are two integers smaller than . By definition of floor, k
is the largest integer smaller that 7. Therefore b < k.

Combining those two inequalities, we get bm < k < b(m+1). After division by b, m < % < m+1.
Therefore m is the floor of %. Replacing m and k by their values, we get:

NEAPRI NN
m=|]= M = MJ
The property is therefore true.

Extra credit

Let x be a positive real number. Solve |z|z|] = 5.

Let A= |z|z]].

Since z > 0, we do not need to worry about x being negative.

We notice first that if © > 3, then || > 3, and z|x] > 9, therefore A > 9.

Therefore possible solutions for x are between 0 and 3, 3 not included. We look at three cases:



a) 0<z<1

In this case, |z] =0 and A = 0. There are no solutions in this interval.
b) 1<z<?2

In this case, |z] =1 and A = |z] = 1. There are no solutions in this interval.
c)2<z<3

In this case, || =2 and A = [2z]. Since 2 <z < 3, 4 < 2z < 6. We distinguish two cases:

i) 4 < 2z < 5, namely 2 < z < 2.5. Then A = [2z| = 4; there are no solutions in this
interval.

i) 5 <2z <6, namely 2.5 <z < 3. Then A = |2x] = 5; all values of z in this interval are
solutions.

In conclusion, all values of = € [2.5, 3] are solutions of the equation.



