
Answers to Odd-Numbered Exercises S-19

CHAPTER 3

Section 3.1

1. max := 1, i := 2, max := 8, i := 3, max := 12, i := 4,
i := 5, i := 6, i := 7, max := 14, i := 8, i := 9, i := 10,
i := 11
3. procedure AddUp(a1, . . . , an: integers)

sum : = a1

for i : = 2 to n

sum := sum + ai

return sum
5. procedure duplicates(a1, a2, . . . , an: integers in

nondecreasing order)
k := 0 {this counts the duplicates}
j := 2
while j ≤ n

if aj = aj−1 then
k := k + 1
ck := aj

while j ≤ n and aj = ck

j := j + 1
j := j + 1
{c1, c2, . . . , ck is the desired list}

7. procedure last even location(a1,a2, . . . ,an: integers)
k := 0
for i := 1 to n

if ai is even then k := i

return k {k = 0 if there are no evens}
9. procedure palindrome check(a1a2 . . . an: string)

answer := true
for i := 1 to �n/2�

if ai �= an+1−i then answer := false
return answer

11. procedure interchange(x, y: real numbers)
z := x

x := y

y := z

The minimum number of assignments needed is three.

13. Linear search: i := 1, i := 2, i := 3, i := 4, i := 5,
i := 6, i := 7, location := 7; binary search: i := 1, j := 8,
m := 4, i := 5, m := 6, i := 7, m := 7, j := 7, location := 7

15. procedure insert(x, a1, a2, . . . , an: integers)
{the list is in order: a1 ≤ a2 ≤ · · · ≤ an}
an+1 := x + 1
i := 1
while x > ai

i := i + 1
for j := 0 to n− i

an−j+1 := an−j

ai := x

{x has been inserted into correct position}

17. procedure first largest(a1, . . . , an: integers)
max := a1

location := 1
for i := 2 to n

if max < ai then
max := ai

location := i

return location

19. procedure mean-median-max-min(a, b, c: integers)
mean := (a + b + c)/ 3
{the six different orderings of a, b, c with respect

to ≥ will be handled separately}
if a ≥ b then

if b ≥ c then median := b;max := a;min := c
...

(The rest of the algorithm is similar.)

21. procedure first-three(a1, a2, . . . , an: integers)
if a1 > a2 then interchange a1 and a2

if a2 > a3 then interchange a2 and a3

if a1 > a2 then interchange a1 and a2

23. procedure onto(f : function from A to B where
A = {a1, . . . , an}, B = {b1, . . . , bm}, a1, . . . , an,
b1, . . . , bm are integers)

for i := 1 to m

hit(bi) := 0
count := 0
for j := 1 to n

if hit(f (aj )) = 0 then
hit(f (aj )) := 1
count := count+ 1

if count = m then return true else return false

25. procedure ones(a: bit string, a = a1a2 . . . an)

count:= 0
for i := 1 to n

if ai := 1 then
count := count+ 1

return count
27. procedure ternary search(s: integer, a1,a2, . . . , an:

increasing integers)
i := 1
j := n

while i < j − 1
l := �(i + j)/3�
u := �2(i + j)/3�
if x > au then i := u+ 1
else if x > al then
i := l + 1
j := u

else j := l

if x = ai then location := i

else if x = aj then location := j



S-20 Answers to Odd-Numbered Exercises

else location := 0
return location {0 if not found}

29. procedure find a mode(a1, a2, . . . , an: nondecreasing
integers)

modecount := 0
i := 1
while i ≤ n

value := ai

count := 1
while i ≤ n and ai = value

count := count+ 1
i := i + 1

if count > modecount then
modecount := count
mode := value

return mode
31. procedure find duplicate(a1, a2, . . . , an: integers)

location := 0
i := 2
while i ≤ n and location = 0
j := 1
while j < i and location = 0

if ai = aj then location := i

else j := j + 1
i := i + 1

return location
{location is the subscript of the first value that
repeats a previous value in the sequence}

33. procedure find decrease(a1, a2, . . . , an: positive
integers)

location := 0
i := 2
while i ≤ n and location = 0

if ai < ai−1 then location := i

else i := i + 1
return location
{location is the subscript of the first value less than
the immediately preceding one}

35. At the end of the first pass: 1, 3, 5, 4, 7; at the end of the
second pass: 1, 3, 4, 5, 7; at the end of the third pass: 1, 3, 4,
5, 7; at the end of the fourth pass: 1, 3, 4, 5, 7
37. procedure better bubblesort(a1, . . . , an: integers)

i : = 1; done : = false
while i < n and done = false

done : = true
for j : = 1 to n− i

if aj > aj+1 then
interchange aj and aj+1
done : = false

i : = i + 1
{a1, . . . , an is in increasing order}

39.At the end of the first, second, and third passes: 1, 3, 5, 7, 4;
at the end of the fourth pass: 1, 3, 4, 5, 7 41. a) 1, 5, 4, 3,
2; 1, 2, 4, 3, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 b) 1, 4, 3, 2,
5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 c) 1, 2, 3, 4,
5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 43. We carry

out the linear search algorithm given as Algorithm 2 in this
section, except that we replace x �= ai by x < ai , and
we replace the else clause with else location := n + 1.
45. 2 + 3 + 4 + · · · + n = (n2 + n − 2)/2 47. Find the
location for the 2 in the list 3 (one comparison), and insert it
in front of the 3, so the list now reads 2, 3, 4, 5, 1, 6. Find
the location for the 4 (compare it to the 2 and then the 3),
and insert it, leaving 2, 3, 4, 5, 1, 6. Find the location for the
5 (compare it to the 3 and then the 4), and insert it, leaving
2, 3, 4, 5, 1, 6. Find the location for the 1 (compare it to the
3 and then the 2 and then the 2 again), and insert it, leaving
1, 2, 3, 4, 5, 6. Find the location for the 6 (compare it to the
3 and then the 4 and then the 5), and insert it, giving the final
answer 1, 2, 3, 4, 5, 6.
49. procedure binary insertion sort(a1, a2, . . . , an:

real numbers with n ≥ 2)

for j := 2 to n

{binary search for insertion location i}
left := 1
right := j − 1
while left < right

middle := �(left+ right)/2�
if aj > amiddle then left := middle+ 1
else right := middle

if aj < aleft then i := left else i := left+ 1
{insert aj in location i by moving ai through aj−1

toward back of list}
m := aj

for k := 0 to j − i − 1
aj−k := aj−k−1

ai := m

{a1, a2, . . . , an are sorted}
51. The variation from Exercise 50 53. a) Two quarters, one
penny b) Two quarters, one dime, one nickel, four pennies
c) A three quarters, one penny d) Two quarters, one dime
55. Greedy algorithm uses fewest coins in parts (a), (c), and
(d). a) Two quarters, one penny b) Two quarters, one dime,
nine pennies c) Three quarters, one penny d) Two quarters,
one dime 57. The 9:00–9:45 talk, the 9:50–10:15 talk, the
10:15–10:45 talk, the 11:00–11:15 talk 59. a) Order the
talks by starting time. Number the lecture halls 1, 2, 3, and
so on. For each talk, assign it to lowest numbered lecture hall
that is currently available. b) If this algorithm uses n lecture
halls, then at the point the nth hall was first assigned, it had
to be used (otherwise a lower-numbered hall would have been
assigned), which means that n talks were going on simulta-
neously (this talk just assigned and the n − 1 talks currently
in halls 1 through n− 1). 61. Here we assume that the men
are the suitors and the women the suitees.
procedure stable(M1, M2, . . . , Ms, W1, W2, . . . , Ws:

preference lists)
for i := 1 to s

mark man i as rejected
for i := 1 to s

set man i’s rejection list to be empty
for j := 1 to s



Answers to Odd-Numbered Exercises S-21

set woman j ’s proposal list to be empty
while rejected men remain

for i := 1 to s

if man i is marked rejected then add i to the
proposal list for the woman j who ranks highest
on his preference list but does not appear on his
rejection list, and mark i as not rejected

for j := 1 to s

if woman j ’s proposal list is nonempty then
remove from j ’s proposal list all men i

except the man i0 who ranks highest on her
preference list, and for each such man i mark
him as rejected and add j to his rejection list

for j := 1 to s

match j with the one man on j ’s proposal list
{This matching is stable.}
63. If the assignment is not stable, then there is a man m and a
woman w such that m prefers w to the woman w′ with whom
he is matched, and w prefers m to the man with whom she is
matched. But m must have proposed to w before he proposed
to w′, because he prefers the former. Because m did not end
up matched with w, she must have rejected him. Women re-
ject a suitor only when they get a better proposal, and they
eventually get matched with a pending suitor, so the woman
with whom w is matched must be better in her eyes than m,
contradicting our original assumption. Therefore the marriage
is stable. 65. Run the two programs on their inputs concur-
rently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10
b) C = 4, k = 7c) Nod) C = 5, k = 1e) C = 1, k = 0 f) C =
1, k = 2 3. x4+9x3+4x+7 ≤ 4x4 for all x > 9; witnesses
C = 4, k = 9 5. (x2+1)/(x+1) = x−1+2/(x+1) < x

for all x > 1; witnesses C = 1, k = 1 7. The choices of C

and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3,
C = 4, k = 1 c) n = 1, C = 2, k = 1 d) n = 0, C = 2, k = 1
9. x2 + 4x + 17 ≤ 3x3 for all x > 17, so x2 + 4x + 17 is
O(x3), with witnesses C = 3, k = 17. However, if x3 were
O(x2 + 4x + 17), then x3 ≤ C(x2 + 4x + 17) ≤ 3Cx2 for
some C, for all sufficiently large x, which implies that x ≤ 3C

for all sufficiently large x, which is impossible. Hence, x3 is
not O(x2+ 4x+ 17). 11. 3x4+ 1 ≤ 4x4 = 8(x4/2) for all
x > 1, so 3x4 + 1 is O(x4/2), with witnesses C = 8, k = 1.
Also x4/2 ≤ 3x4+1 for all x > 0, so x4/2 is O(3x4+1), with
witnesses C = 1, k = 0. 13. Because 2n ≤ 3n for all n > 0,
it follows that 2n is O(3n), with witnesses C = 1, k = 0.
However, if 3n were O(2n), then for some C, 3n ≤ C · 2n for
all sufficiently large n. This says that C ≥ (3/2)n for all suffi-
ciently large n, which is impossible. Hence, 3n is not O(2n).
15. All functions for which there exist real numbers k and C

with |f (x)| ≤ C for x > k. These are the functions f (x) that
are bounded for all sufficiently large x. 17. There are con-
stants C1, C2, k1, and k2 such that |f (x)| ≤ C1|g(x)| for all
x > k1 and |g(x)| ≤ C2|h(x)| for all x > k2. Hence, for x >

max(k1, k2) it follows that |f (x)| ≤ C1|g(x)| ≤ C1C2|h(x)|.
This shows that f (x) is O(h(x)). 19. 2n+1 is O(2n);
22n is not. 21. 1000 log n,

√
n, n log n, n2/1000000, 2n,

3n, 2n! 23. The algorithm that uses n log n operations
25. a) O(n3) b) O(n5) c) O(n3 · n!) 27. a) O(n2 log n)

b) O(n2(log n)2) c) O(n2n
) 29. a) Neither �(x2) nor

�(x2) b) �(x2) and �(x2) c) Neither �(x2) nor �(x2)

d) �(x2), but not �(x2) e) �(x2), but not �(x2) f) �(x2)

and �(x2) 31. If f (x) is �(g(x)), then there exist con-
stants C1 and C2 with C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|.
It follows that |f (x)| ≤ C2|g(x)| and |g(x)| ≤ (1/C1)|f (x)|
for x > k. Thus, f (x) is O(g(x)) and g(x) is O(f (x)). Con-
versely, suppose that f (x) is O(g(x)) and g(x) is O(f (x)).
Then there are constants C1, C2, k1, and k2 such that |f (x)| ≤
C1|g(x)| for x > k1 and |g(x)| ≤ C2|f (x)| for x > k2. We can
assume that C2 > 0 (we can always make C2 larger). Then we
have (1/C2)|g(x)| ≤ |f (x)| ≤ C1|g(x)| for x > max(k1, k2).
Hence, f (x) is �(g(x)). 33. If f (x) is �(g(x)), then f (x)

is both O(g(x)) and �(g(x)). Hence, there are positive con-
stants C1, k1, C2, and k2 such that |f (x)| ≤ C2|g(x)| for
all x > k2 and |f (x)| ≥ C1|g(x)| for all x > k1. It fol-
lows that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever x > k,
where k = max(k1,k2). Conversely, if there are positive con-
stants C1, C2, and k such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|
for x > k, then taking k1 = k2 = k shows that f (x) is both
O(g(x)) and �(g(x)).

35.

k x

y C2g(x)

C1g (x)

f (x)

37. If f (x) is �(1), then |f (x)| is bounded between pos-
itive constants C1 and C2. In other words, f (x) cannot
grow larger than a fixed bound or smaller than the nega-
tive of this bound and must not get closer to 0 than some
fixed bound. 39. Because f (x) is O(g(x)), there are con-
stants C and k such that |f (x)| ≤ C|g(x)| for x > k.
Hence, |f n(x)| ≤ Cn|gn(x)| for x > k, so f n(x) is
O(gn(x)) by taking the constant to be Cn. 41. Because
f (x) and g(x) are increasing and unbounded, we can assume
f (x) ≥ 1 and g(x) ≥ 1 for sufficiently large x. There are
constants C and k with f (x) ≤ Cg(x) for x > k. This
implies that log f (x) ≤ log C + log g(x) < 2 log g(x)

for sufficiently large x. Hence, log f (x) is O(log g(x)).
43. By definition there are positive constraints C1, C′1,
C2, C′2, k1, k′1, k2, and k′2 such that f1(x) ≥ C1|g(x)|
for all x > k1, f1(x) ≤ C′1|g(x)| for all x > k′1,
f2(x) ≥ C2|g(x)| for all x > k2, and f2(x) ≤ C′2|g(x)|
for all x > k′2. Adding the first and third inequalities shows
that f1(x) + f2(x) ≥ (C1 + C2)|g(x)| for all x > k where


