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erties divide the plane into k2 − k + 2 + 2k = (k2+
2k + 1) − (k + 1) + 2 = (k + 1)2 − (k + 1) + 2 re-
gions. 51. Suppose

√
2 were rational. Then

√
2 = a/b,

where a and b are positive integers. It follows that the set
S = {n√2 | n ∈ N}∩N is a nonempty set of positive integers,
because b

√
2 = a belongs to S. Let t be the least element of S,

which exists by the well-ordering property. Then t = s
√

2 for
some integer s. We have t−s = s

√
2−s = s(

√
2−1), so t−s

is a positive integer because
√

2 > 1. Hence, t−s belongs to S.
This is a contradiction because t−s = s

√
2−s < s. Hence,

√
2

is irrational. 53. a) Let d = gcd(a1, a2, . . . , an). Then d is
a divisor of each ai and so must be a divisor of gcd(an−1, an).
Hence, d is a common divisor of a1, a2, . . . , an−2, and
gcd(an−1, an). To show that it is the greatest common divisor
of these numbers, suppose that c is a common divisor of them.
Then c is a divisor of ai for i = 1, 2, . . . , n− 2 and a divisor
of gcd(an−1, an), so it is a divisor of an−1 and an. Hence, c

is a common divisor of a1, a2, . . . , an−1, and an. Hence, it is
a divisor of d, the greatest common divisor of a1, a2, . . . , an.
It follows that d is the greatest common divisor, as claimed.
b) If n = 2, apply the Euclidean algorithm. Otherwise, ap-
ply the Euclidean algorithm to an−1 and an, obtaining d =
gcd(an−1, an), and then apply the algorithm recursively to a1,
a2, . . . , an−2, d . 55. f (n) = n2. Let P(n) be “f (n) = n2.”
Basis step: P(1) is true because f (1)= 1= 12, which follows
from the definition of f . Inductive step: Assume f (n) = n2.
Then f (n+ 1) = f ((n+ 1) − 1)+ 2(n+ 1)− 1 = f (n)+
2n + 1 = n2 + 2n + 1 = (n + 1)2. 57. a) λ, 0, 1, 00,
01, 11, 000, 001, 011, 111, 0000, 0001, 0011, 0111, 1111,
00000, 00001, 00011, 00111, 01111, 11111 b) S = {αβ | α
is a string of m 0s and β is a string of n 1s, m ≥ 0, n ≥ 0}
59. Apply the first recursive step to λ to get () ∈ B. Apply
the second recursive step to this string to get ()() ∈ B. Ap-
ply the first recursive step to this string to get (()()) ∈ B.
By Exercise 62, (())) is not in B because the number of left
parentheses does not equal the number of right parentheses.
61. λ, (), (()), ()() 63. a) 0 b) −2 c) 2 d) 0

65.
procedure generate(n: nonnegative integer)
if n is odd then

S := S(n− 1) {the S constructed by generate(n− 1)}
T := T (n− 1) {the T constructed by generate(n− 1)}

else if n = 0 then
S := ∅
T := {λ}

else
S′ := S(n− 2) {the S constructed by generate(n− 2)}
T ′ := T (n− 2) {the T constructed by generate(n− 2)}
T := T ′ ∪ {(x)|x ∈ T ′ ∪ S′ ∧ length(x) = n− 2}
S := S′ ∪ {xy|x ∈ T ′ ∧ y ∈ T ′ ∪ S′ ∧ length(xy) = n}

{T ∪ S is the set of balanced strings of length at most n}
67. If x ≤ y initially, then x := y is not executed, so x ≤ y

is a true final assertion. If x > y initially, then x := y is
executed, so x ≤ y is again a true final assertion.
69. procedure zerocount(a1, a2, . . . , an: list of integers)

if n = 1 then

if a1 = 0 then return 1
else return 0

else
if an = 0 then return zerocount (a1, a2, . . . , an−1)+ 1
else return zerocount (a1, a2, . . . , an−1)

71. We will prove that a(n) is a natural number and a(n) ≤ n.
This is true for the base case n = 0 because a(0) = 0. Now
assume that a(n−1) is a natural number and a(n−1) ≤ n−1.
Then a(a(n−1)) is a applied to a natural number less than or
equal to n − 1. Hence, a(a(n − 1)) is also a natural number
minus than or equal to n− 1. Therefore, n− a(a(n− 1)) is n

minus some natural number less than or equal to n−1, which is
a natural number less than or equal to n. 73. From Exercise
72, a(n) = �(n+1)μ� and a(n−1) = �nμ�. Because μ < 1,
these two values are equal or they differ by 1. First suppose that
μn−�μn� < 1−μ. This is equivalent to μ(n+1) < 1+�μn�.
If this is true, then �μ(n + 1)� = �μn�. On the other hand,
if μn − �μn� ≥ 1 − μ, then μ(n + 1) ≥ 1 + �μn�,
so �μ(n + 1)� = �μn� + 1, as desired. 75. f (0) = 1,
m(0) = 0; f (1) = 1, m(1) = 0; f (2) = 2, m(2) = 1;
f (3) = 2, m(3) = 2; f (4) = 3, m(4) = 2; f (5) = 3,
m(5) = 3; f (6) = 4, m(6) = 4; f (7) = 5, m(7) = 4;
f (8) = 5, m(8) = 5; f (9) = 6, m(9) = 6 77. The last
occurrence of n is in the position for which the total number of
1s, 2s, . . . , ns all together is that position number. But because
ak is the number of occurrences of k, this is just

∑n
k=1 ak , as

desired. Because f (n) is the sum of the first n terms of the
sequence, f (f (n)) is the sum of the first f (n) terms of the
sequence. But because f (n) is the last term whose value is n,
this means that the sum is the sum of all terms of the sequence
whose value is at most n. Because there are ak terms of the
sequence whose value is k, this sum is

∑n
k=1 k · ak , as desired

CHAPTER 6

Section 6.1

1. a) 5850 b) 343 3. a) 410 b) 510 5. 42 7. 263

9. 676 11. 28 13. n + 1 (counting the empty string)
15. 475,255 (counting the empty string) 17. 1,321,368,961
19. a) 729 b) 256 c) 1024 d) 64 21. a) Seven: 56,
63, 70, 77, 84, 91, 98 b) Five: 55, 66, 77, 88, 99
c) One: 77 23. a) 128 b) 450 c) 9 d) 675 e) 450
f) 450 g) 225 h) 75 25. a) 990 b) 500 c) 27 27. 350

29. 52,457,600 31. 20,077,200 33. a) 37,822,859,361
b) 8,204,716,800 c) 40,159,050, 880 d) 12,113,640,000
e) 171,004,205,215 f) 72,043,541,640 g) 6,230,721,635
h) 223,149,655 35. a) 0 b) 120 c) 720 d) 2520 37. a) 2
if n = 1, 2 if n = 2, 0 if n ≥ 3 b) 2n−2 for n > 1; 1 if
n = 1 c) 2(n − 1) 39. (n + 1)m 41. If n is even, 2n/2;
if n is odd, 2(n+1)/2 43. a) 175 b) 248 c) 232 d) 84
45. 60 47. a) 240 b) 480 c) 360 49. 352 51. 147
53. 33 55. a) 9,920,671,339,261,325,541,376 ≈ 9.9 ×
1021 b) 6,641,514,961,387,068,437,760 ≈ 6.6 ×
1021 c) About 314,000 years 57. 54(6465536 − 1)/63
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59. 7,104,000,000,000 61. 1610 + 1626 + 1658

63. 666,667 65. 18 67. 17 69. 22 71. Let P(m) be
the sum rule for m tasks. For the basis case take m = 2. This
is just the sum rule for two tasks. Now assume that P(m) is
true. Consider m + 1 tasks, T1, T2, . . . ,Tm, Tm+1, which can
be done in n1, n2, . . . , nm, nm+1 ways, respectively, such that
no two of these tasks can be done at the same time. To do one
of these tasks, we can either do one of the first m of these or
do task Tm+1. By the sum rule for two tasks, the number of
ways to do this is the sum of the number of ways to do one of
the first m tasks, plus nm+1. By the inductive hypothesis, this
is n1 + n2 + · · · + nm + nm+1, as desired. 73. n(n− 3)/2

Section 6.2

1. Because there are six classes, but only five weekdays, the
pigeonhole principle shows that at least two classes must be
held on the same day. 3. a) 3 b) 14 5. Because there are
four possible remainders when an integer is divided by 4,
the pigeonhole principle implies that given five integers, at
least two have the same remainder. 7. Let a, a + 1, . . . ,

a + n − 1 be the integers in the sequence. The integers
(a + i) mod n, i = 0, 1, 2, . . . , n − 1, are distinct, because
0 < (a+ j)− (a+ k) < n whenever 0 ≤ k < j ≤ n− 1. Be-
cause there are n possible values for (a + i) mod n and there
are n different integers in the set, each of these values is taken
on exactly once. It follows that there is exactly one integer in
the sequence that is divisible by n. 9. 4951 11. The mid-
point of the segment joining the points (a, b, c) and (d, e, f )

is ((a+d)/2, (b+e)/2, (c+f )/2). It has integer coefficients
if and only if a and d have the same parity, b and e have the
same parity, and c and f have the same parity. Because there
are eight possible triples of parity [such as (even, odd, even)],
by the pigeonhole principle at least two of the nine points have
the same triple of parities. The midpoint of the segment join-
ing two such points has integer coefficients. 13. a) Group
the first eight positive integers into four subsets of two inte-
gers each so that the integers of each subset add up to 9: {1, 8},
{2, 7}, {3, 6}, and {4, 5}. If five integers are selected from the
first eight positive integers, by the pigeonhole principle at least
two of them come from the same subset. Two such integers
have a sum of 9, as desired. b) No. Take {1, 2, 3, 4}, for exam-
ple. 15. 4 17. 21,251 19. a) If there were fewer than 9
freshmen, fewer than 9 sophomores, and fewer than 9 juniors
in the class, there would be no more than 8 with each of these
three class standings, for a total of at most 24 students, con-
tradicting the fact that there are 25 students in the class. b) If
there were fewer than 3 freshmen, fewer than 19 sophomores,
and fewer than 5 juniors, then there would be at most 2 fresh-
men, at most 18 sophomores, and at most 4 juniors, for a total
of at most 24 students. This contradicts the fact that there are
25 students in the class. 21. 4, 3, 2, 1, 8, 7, 6, 5, 12, 11,
10, 9, 16, 15, 14, 13 23. Number the seats around the table
from 1 to 50, and think of seat 50 as being adjacent to seat 1.
There are 25 seats with odd numbers and 25 seats with even
numbers. If no more than 12 boys occupied the odd-numbered

seats, then at least 13 boys would occupy the even-numbered
seats, and vice versa. Without loss of generality, assume that
at least 13 boys occupy the 25 odd-numbered seats. Then at
least two of those boys must be in consecutive odd-numbered
seats, and the person sitting between them will have boys as
both of his or her neighbors.
25. procedure long(a1, . . . , an: positive integers)

{first find longest increasing subsequence}
max := 0; set := 00 . . . 00 {n bits}
for i := 1 to 2n

last := 0; count := 0, OK := true
for j := 1 to n

if set(j) = 1 then
if aj > last then last := aj

count := count + 1
else OK := false

if count > max then
max := count
best := set

set := set+ 1 (binary addition)
{max is length and best indicates the sequence}
{repeat for decreasing subsequence with only

changes being aj < last instead of aj > last
and last := ∞ instead of last := 0}

27. By symmetry we need prove only the first statement. Let
A be one of the people. Either A has at least four friends, or A

has at least six enemies among the other nine people (because
3 + 5 < 9). Suppose, in the first case, that B, C, D, and E

are all A’s friends. If any two of these are friends with each
other, then we have found three mutual friends. Otherwise
{B, C, D, E} is a set of four mutual enemies. In the second
case, let {B, C, D, E, F, G} be a set of enemies of A. By
Example 11, among B, C, D, E, F , and G there are either
three mutual friends or three mutual enemies, who form, with
A, a set of four mutual enemies. 29. We need to show two
things: that if we have a group of n people, then among them
we must find either a pair of friends or a subset of n of them
all of whom are mutual enemies; and that there exists a group
of n − 1 people for which this is not possible. For the first
statement, if there is any pair of friends, then the condition is
satisfied, and if not, then every pair of people are enemies, so
the second condition is satisfied. For the second statement, if
we have a group of n− 1 people all of whom are enemies of
each other, then there is neither a pair of friends nor a subset
of n of them all of whom are mutual enemies. 31. There
are 6,432,816 possibilities for the three initials and a birthday.
So, by the generalized pigeonhole principle, there are at least
�37,000,000/6,432,816� = 6 people who share the same
initials and birthday. 33. Because 800,001 > 200,000, the
pigeonhole principle guarantees that there are at least two
Parisians with the same number of hairs on their heads. The
generalized pigeonhole principle guarantees that there are at
least �800,001/200,000� = 5 Parisians with the same num-
ber of hairs on their heads. 35. 18 37. Because there are
six computers, the number of other computers a computer is
connected to is an integer between 0 and 5, inclusive. How-
ever, 0 and 5 cannot both occur. To see this, note that if some
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computer is connected to no others, then no computer is con-
nected to all five others, and if some computer is connected
to all five others, then no computer is connected to no others.
Hence, by the pigeonhole principle, because there are at most
five possibilities for the number of computers a computer is
connected to, there are at least two computers in the set of six
connected to the same number of others. 39. Label the com-
puters C1 through C100, and label the printers P1 through P20.
If we connect Ck to Pk for k = 1, 2, . . . , 20 and connect each
of the computers C21 through C100 to all the printers, then we
have used a total of 20+80 ·20 = 1620 cables. Clearly this is
sufficient, because if computers C1 through C20 need printers,
then they can use the printers with the same subscripts, and if
any computers with higher subscripts need a printer instead of
one or more of these, then they can use the printers that are not
being used, because they are connected to all the printers. Now
we must show that 1619 cables is not enough. Because there
are 1619 cables and 20 printers, the average number of com-
puters per printer is 1619/20, which is less than 81. Therefore
some printer must be connected to fewer than 81 computers.
That means it is connected to 80 or fewer computers, so there
are 20 computers that are not connected to it. If those 20 com-
puters all needed a printer simultaneously, then they would be
out of luck, because they are connected to at most the 19 other
printers. 41. Let ai be the number of matches completed by
hour i. Then 1 ≤ a1 < a2 < · · · < a75 ≤ 125. Also
25 ≤ a1 + 24 < a2 + 24 < · · · < a75 + 24 ≤ 149. There
are 150 numbers a1, . . . , a75, a1 + 24, . . . , a75 + 24. By the
pigeonhole principle, at least two are equal. Because all the
ais are distinct and all the (ai + 24)s are distinct, it follows
that ai = aj + 24 for some i > j . Thus, in the period from
the (j + 1)st to the ith hour, there are exactly 24 matches.
43. Use the generalized pigeonhole principle, placing the |S|
objects f (s) for s ∈ S in |T | boxes, one for each element of
T . 45. Let dj be jx − N(jx), where N(jx) is the integer
closest to jx for 1 ≤ j ≤ n. Each dj is an irrational num-
ber between −1/2 and 1/2. We will assume that n is even;
the case where n is odd is messier. Consider the n intervals
{x | j/n < x < (j + 1)/n}, {x | −(j + 1)/n < x < −j/n}
for j = 0, 1, . . . , (n/2) − 1. If dj belongs to the interval
{x | 0 < x < 1/n} or to the interval {x | −1/n < x < 0}
for some j , we are done. If not, because there are n − 2 in-
tervals and n numbers dj , the pigeonhole principle tells us
that there is an interval {x | (k − 1)/n < x < k/n} con-
taining dr and ds with r < s. The proof can be finished by
showing that (s − r)x is within 1/n of its nearest integer.
47. a) Assume that ik ≤ n for all k. Then by the generalized
pigeonhole principle, at least �(n2 + 1)/n� = n + 1 of the
numbers i1, i2, . . . , in2+1 are equal. b) If akj

< akj+1 , then the
subsequence consisting of akj

followed by the increasing sub-
sequence of length ikj+1 starting at akj+1 contradicts the fact
that ikj

= ikj+1 . Hence, akj
> akj+1 . c) If there is no increas-

ing subsequence of length greater than n, then parts (a) and
(b) apply. Therefore, we have akn+1 > akn > · · · > ak2 > ak1 ,
a decreasing sequence of length n+ 1.

Section 6.3

1. abc, acb, bac, bca, cab, cba 3. 720 5. a) 120
b) 720 c) 8 d) 6720 e) 40,320 f) 3,628,800 7. 15,120
9. 1320 11. a) 210 b) 386 c) 848 d) 252 13. 2(n!)2

15. 65,780 17. 2100 − 5051 19. a) 1024 b) 45
c) 176 d) 252 21. a) 120 b) 24 c) 120 d) 24
e) 6 f) 0 23. 609,638,400 25. a) 94,109,400 b) 941,094
c) 3,764,376 d) 90,345,024 e) 114,072 f) 2328 g) 24
h) 79,727,040 i) 3,764,376 j) 109,440 27. a) 12,650
b) 303,600 29. a) 37,927 b) 18,915 31. a) 122,523,030
b) 72,930,375 c) 223,149,655 d) 100,626,625 33. 54,600
35. 45 37. 912 39. 11,232,000 41. n!/(r(n − r)!)
43. 13 45. 873

Section 6.4

1. x4 + 4x3y + 6x2y2 + 4xy3 + y4 3. x6 +
6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

5. 101 7. −210
(19

9

) = −94,595,072 9. −2101399
(200

99

)

11. (−1)(200−k)/3
( 100
(200−k)/3

)
if k ≡ 2 (mod 3) and −100 ≤

k ≤ 200; 0 otherwise 13. 1 9 36 84 126 126 84
36 9 1 15. The sum of all the positive numbers

(
n
k

)
, as

k runs from 0 to n, is 2n, so each one of them is no big-
ger than this sum. 17.

(
n
k

) = n(n−1)(n−2)···(n−k+1)
k(k−1)(k−2)···2 ≤

n·n·····n
2·2·····2 = nk/2k−1 19.

(
n

k−1

) + (
n
k

) = n!
(k−1)!(n−k+ 1)! +

n!
k!(n−k)! = n!

k!(n−k+1)! · [k+ (n− k+1)] = (n+1)!
k!(n+1−k)! =

(
n+1
k

)

21. a) We show that each side counts the number of ways
to choose from a set with n elements a subset with k ele-
ments and a distinguished element of that set. For the left-
hand side, first choose the k-set (this can be done in

(
n
k

)
ways)

and then choose one of the k elements in this subset to be
the distinguished element (this can be done in k ways). For
the right-hand side, first choose the distinguished element out
of the entire n-set (this can be done in n ways), and then
choose the remaining k − 1 elements of the subset from the
remaining n− 1 elements of the set (this can be done in

(
n−1
k−1

)

ways). b) k
(
n
k

) = k · n!
k!(n−k)! = n·(n−1)!

(k−1)!(n−k)! = n
(
n−1
k−1

)

23.
(
n+1
k

) = (n+1)!
k!(n+1−k)! = (n+1)

k
n!

(k−1)![n−(k−1)]! = (n+ 1)(
n

k−1

)
/k. This identity together with

(
n
0

) = 1 gives a recursive

definition. 25.
( 2n
n+1

) + (2n
n

) = (2n+1
n+1

) = 1
2

[(2n+1
n+1

) +
(2n+1

n+1

)] = 1
2

[(2n+1
n+1

) +(2n+1
n

)] = 1
2

(2n+2
n+1

)
27. a)

(
n+r+1

r

)

counts the number of ways to choose a sequence of r 0s and
n+ 1 1s by choosing the positions of the 0s. Alternately, sup-
pose that the (j + 1)st term is the last term equal to 1, so that
n≤ j ≤ n+r . Once we have determined where the last 1 is, we
decide where the 0s are to be placed in the j spaces before the
last 1. There are n 1s and j−n 0s in this range. By the sum rule
it follows that there are

∑n+r
j=n

(
j

j−n

)=∑r
k=0

(
n+k
k

)
ways to do

this. b) Let P(r) be the statement to be proved. The basis step
is the equation

(
n
0

) = (n+1
0

)
, which is just 1 = 1. Assume that

P(r) is true. Then
∑r+1

k=0

(
n+k
k

) = ∑r
k=0

(
n+k
k

) + (n+r+1
r+1

) =(
n+r+1

r

)+ (n+r+1
r+1

) = (n+r+2
r+1

)
, using the inductive hypothesis


