
Answers to Odd-Numbered Exercises S-21

set woman j ’s proposal list to be empty
while rejected men remain

for i := 1 to s

if man i is marked rejected then add i to the
proposal list for the woman j who ranks highest
on his preference list but does not appear on his
rejection list, and mark i as not rejected

for j := 1 to s

if woman j ’s proposal list is nonempty then
remove from j ’s proposal list all men i

except the man i0 who ranks highest on her
preference list, and for each such man i mark
him as rejected and add j to his rejection list

for j := 1 to s

match j with the one man on j ’s proposal list
{This matching is stable.}
63. If the assignment is not stable, then there is a man m and a
woman w such that m prefers w to the woman w′ with whom
he is matched, and w prefers m to the man with whom she is
matched. But m must have proposed to w before he proposed
to w′, because he prefers the former. Because m did not end
up matched with w, she must have rejected him. Women re-
ject a suitor only when they get a better proposal, and they
eventually get matched with a pending suitor, so the woman
with whom w is matched must be better in her eyes than m,
contradicting our original assumption. Therefore the marriage
is stable. 65. Run the two programs on their inputs concur-
rently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10
b) C = 4, k = 7c) Nod) C = 5, k = 1e) C = 1, k = 0 f) C =
1, k = 2 3. x4+9x3+4x+7 ≤ 4x4 for all x > 9; witnesses
C = 4, k = 9 5. (x2+1)/(x+1) = x−1+2/(x+1) < x

for all x > 1; witnesses C = 1, k = 1 7. The choices of C

and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3,
C = 4, k = 1 c) n = 1, C = 2, k = 1 d) n = 0, C = 2, k = 1
9. x2 + 4x + 17 ≤ 3x3 for all x > 17, so x2 + 4x + 17 is
O(x3), with witnesses C = 3, k = 17. However, if x3 were
O(x2 + 4x + 17), then x3 ≤ C(x2 + 4x + 17) ≤ 3Cx2 for
some C, for all sufficiently large x, which implies that x ≤ 3C

for all sufficiently large x, which is impossible. Hence, x3 is
not O(x2+ 4x+ 17). 11. 3x4+ 1 ≤ 4x4 = 8(x4/2) for all
x > 1, so 3x4 + 1 is O(x4/2), with witnesses C = 8, k = 1.
Also x4/2 ≤ 3x4+1 for all x > 0, so x4/2 is O(3x4+1), with
witnesses C = 1, k = 0. 13. Because 2n ≤ 3n for all n > 0,
it follows that 2n is O(3n), with witnesses C = 1, k = 0.
However, if 3n were O(2n), then for some C, 3n ≤ C · 2n for
all sufficiently large n. This says that C ≥ (3/2)n for all suffi-
ciently large n, which is impossible. Hence, 3n is not O(2n).
15. All functions for which there exist real numbers k and C

with |f (x)| ≤ C for x > k. These are the functions f (x) that
are bounded for all sufficiently large x. 17. There are con-
stants C1, C2, k1, and k2 such that |f (x)| ≤ C1|g(x)| for all
x > k1 and |g(x)| ≤ C2|h(x)| for all x > k2. Hence, for x >

max(k1, k2) it follows that |f (x)| ≤ C1|g(x)| ≤ C1C2|h(x)|.
This shows that f (x) is O(h(x)). 19. 2n+1 is O(2n);
22n is not. 21. 1000 log n,

√
n, n log n, n2/1000000, 2n,

3n, 2n! 23. The algorithm that uses n log n operations
25. a) O(n3) b) O(n5) c) O(n3 · n!) 27. a) O(n2 log n)

b) O(n2(log n)2) c) O(n2n
) 29. a) Neither �(x2) nor

�(x2) b) �(x2) and �(x2) c) Neither �(x2) nor �(x2)

d) �(x2), but not �(x2) e) �(x2), but not �(x2) f) �(x2)

and �(x2) 31. If f (x) is �(g(x)), then there exist con-
stants C1 and C2 with C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|.
It follows that |f (x)| ≤ C2|g(x)| and |g(x)| ≤ (1/C1)|f (x)|
for x > k. Thus, f (x) is O(g(x)) and g(x) is O(f (x)). Con-
versely, suppose that f (x) is O(g(x)) and g(x) is O(f (x)).
Then there are constants C1, C2, k1, and k2 such that |f (x)| ≤
C1|g(x)| for x > k1 and |g(x)| ≤ C2|f (x)| for x > k2. We can
assume that C2 > 0 (we can always make C2 larger). Then we
have (1/C2)|g(x)| ≤ |f (x)| ≤ C1|g(x)| for x > max(k1, k2).
Hence, f (x) is �(g(x)). 33. If f (x) is �(g(x)), then f (x)

is both O(g(x)) and �(g(x)). Hence, there are positive con-
stants C1, k1, C2, and k2 such that |f (x)| ≤ C2|g(x)| for
all x > k2 and |f (x)| ≥ C1|g(x)| for all x > k1. It fol-
lows that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever x > k,
where k = max(k1,k2). Conversely, if there are positive con-
stants C1, C2, and k such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|
for x > k, then taking k1 = k2 = k shows that f (x) is both
O(g(x)) and �(g(x)).

35.

k x

y C2g(x)
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37. If f (x) is �(1), then |f (x)| is bounded between pos-
itive constants C1 and C2. In other words, f (x) cannot
grow larger than a fixed bound or smaller than the nega-
tive of this bound and must not get closer to 0 than some
fixed bound. 39. Because f (x) is O(g(x)), there are con-
stants C and k such that |f (x)| ≤ C|g(x)| for x > k.
Hence, |f n(x)| ≤ Cn|gn(x)| for x > k, so f n(x) is
O(gn(x)) by taking the constant to be Cn. 41. Because
f (x) and g(x) are increasing and unbounded, we can assume
f (x) ≥ 1 and g(x) ≥ 1 for sufficiently large x. There are
constants C and k with f (x) ≤ Cg(x) for x > k. This
implies that log f (x) ≤ log C + log g(x) < 2 log g(x)

for sufficiently large x. Hence, log f (x) is O(log g(x)).
43. By definition there are positive constraints C1, C′1,
C2, C′2, k1, k′1, k2, and k′2 such that f1(x) ≥ C1|g(x)|
for all x > k1, f1(x) ≤ C′1|g(x)| for all x > k′1,
f2(x) ≥ C2|g(x)| for all x > k2, and f2(x) ≤ C′2|g(x)|
for all x > k′2. Adding the first and third inequalities shows
that f1(x) + f2(x) ≥ (C1 + C2)|g(x)| for all x > k where
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k = max(k1, k2). Adding the second and fourth inequalities
shows that f1(x) + f2(x) ≤ (C′1 + C′2)|g(x)| for all x > k′
where k′ = max(k′1, k′2). Hence, f1(x) + f2(x) is �(g(x)).
This is no longer true if f1 and f2 can assume negative values.
45. This is false. Let f1 = x2 + 2x, f2(x) = x2 + x,
and g(x) = x2. Then f1(x) and f2(x) are both O(g(x)),
but (f1 − f2)(x) is not. 47. Take f (n) to be the func-
tion with f (n) = n if n is an odd positive integer and
f (n) = 1 if n is an even positive integer and g(n) to be the
function with g(n) = 1 if n is an odd positive integer and
g(n) = n if n is an even positive integer. 49. There are
positive constants C1, C2, C′1, C′2, k1, k′1, k2, and k′2 such that
|f1(x)| ≥ C1|g1(x)| for all x > k1, |f1(x)| ≤ C′1|g1(x)|
for all x ≥ k′1, |f2(x)| > C2|g2(x)| for all x > k2, and
|f2(x)| ≤ C′2|g2(x)| for all x > k′2. Because f2 and g2

are never zero, the last two inequalities can be rewritten as
|1/f2(x)| ≤ (1/C2)|1/g2(x)| for all x > k2 and |1/f2(x)| ≥
(1/C′2)|1/g2(x)| for all x > k′2. Multiplying the first and
rewritten fourth inequalities shows that |f1(x)/f2(x)| ≥
(C1/C′2)|g1(x)/g2(x)| for all x > max(k1, k

′
2), and mul-

tiplying the second and rewritten third inequalities
gives |f1(x)/f2(x)| ≤ (C′1/C2)|g1(x)/g2(x)| for all x >

max(k′1, k2). It follows that f1/f2 is big-Theta of g1/g2.
51. There exist positive constants C1, C2, k1, k2, k′1, k′2
such that |f (x, y)| ≤ C1|g(x, y)| for all x > k1 and y > k2

and |f (x, y)| ≥ C2|g(x, y)| for all x > k′1 and y > k′2.
53. (x2 + xy + x log y)3 < (3x2y3) = 27x6y3 for
x > 1 and y > 1, because x2 < x2y, xy < x2y, and
x log y < x2y. Hence, (x2 + xy + x log y)3 is O(x6y3).
55. For all positive real numbers x and y, �xy� ≤ xy.

Hence, �xy� is O(xy) from the definition, taking C = 1
and k1 = k2 = 0. 57. Clearly nd < nc for all n ≥ 2;
therefore nd is O(nc). The ratio nd/nc = nd−c is un-
bounded so there is no constant C such that nd ≤ Cnc for
large n. 59. If f and g are positive-valued functions such
that limn→∞ f (x)/g(x) = C <∞, then f (x) < (C+1)g(x)

for large enough x, so f (n) is O(g(n)). If that limit is ∞,
then clearly f (n) is not O(g(n)). Here repeated applica-
tions of L’Hôpital’s rule shows that limx→∞ xd/bx = 0
and limx→∞ bx/xd = ∞. 61. a) limx→∞ x2/x3 =
limx→∞ 1/x = 0 b) limx→∞ x log x

x2 = limx→∞ log x
x

=
limx→∞ 1

x ln 2 = 0 (using L’Hôpital’s rule) c) limx→∞ x2

2x =
limx→∞ 2x

2x ·ln 2 = limx→∞ 2
2x ·(ln 2)2 = 0 (using L’Hôpital’s

rule) d) limx→∞ x2+x+1
x2 = limx→∞

(
1+ 1

x
+ 1

x2

)
= 1 �= 0

63.
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65. No. Take f (x) = 1/x2 and g(x) = 1/x. 67. a) Be-
cause limx→∞ f (x)/g(x) = 0, |f (x)|/|g(x)| < 1 for
sufficiently large x. Hence, |f (x)| < |g(x)| for x > k

for some constant k. Therefore, f (x) is O(g(x)). b) Let
f (x) = g(x) = x. Then f (x) is O(g(x)), but f (x) is
not o(g(x)) because f (x)/g(x) = 1. 69. Because f2(x) is
o(g(x)), from Exercise 67(a) it follows that f2(x) is O(g(x)).
By Corollary 1, we have f1(x)+f2(x) is O(g(x)). 71. We
can easily show that (n− i)(i+ 1)≥ n for i= 0,1, . . . , n− 1.
Hence, (n!)2 = (n · 1)((n − 1) · 2) · ((n − 2) · 3) · · · (2 · (n −
1)) · (1 ·n)≥ nn. Therefore, 2 log n! ≥ n log n. 73. Compute
that log 5! ≈ 6.9 and (5 log 5)/4 ≈ 2.9, so the in-
equality holds for n = 5. Assume n ≥ 6. Because n!
is the product of all the integers from n down to 1, we
have n! > n(n − 1)(n − 2) · · · �n/2� (because at least
the term 2 is missing). Note that there are more than n/2
terms in this product, and each term is at least as big as
n/2. Therefore the product is greater than (n/2)(n/2). Tak-
ing the log of both sides of the inequality, we have log n! >

log
(

n
2

)n/2 = n
2 log n

2 = n
2 (log n− 1) > (n log n)/4, because

n > 4 implies log n − 1 > (log n)/2. 75. All are not
asymptotic.

Section 3.3

1. O(1) 3. O(n2) 5. 2n− 1 7. Linear 9. O(n)

11. a) procedure disjointpair(S1, S2, . . . , Sn :
subsets of {1, 2, . . . , n})

answer := false
for i := 1 to n

for j := i + 1 to n

disjoint := true
for k := 1 to n

if k ∈ Si and k ∈ Sj then disjoint := false
if disjoint then answer := true

return answer

b) O(n3) 13. a) power := 1, y := 1; i := 1,
power := 2, y := 3; i := 2, power := 4, y := 15
b) 2n multiplications and n additions 15. a) 2109 ≈103× 108

b) 109 c) 3.96 × 107 d) 3.16 × 104 e) 29 f) 12

17. a) 2260·1012

b) 260·1012
c) �2

√
60·106� ≈ 2 × 102331768

d) 60,000,000 e) 7,745,966 f) 45 g) 6 19. a) 36 years
b) 13 days c) 19 minutes 21. a) Less than 1 millisec-
ond more b) 100 milliseconds more c) 2n + 1 milliseconds
more d) 3n2 + 3n+ 1 milliseconds more e) Twice as much
time f) 22n+1 times as many milliseconds g) n + 1 times
as many milliseconds 23. The average number of compar-
isons is (3n+ 4)/2. 25. O(log n) 27. O(n) 29. O(n2)

31. O(n) 33. O(n) 35. O(log n) comparisons; O(n2)

swaps 37. O(n22n) 39. a) doubles b) increases by 1
41. Use Algorithm 1, where A and B are now n × n up-
per triangular matrices, by replacing m by n in line 1, and


