set woman j’s proposal list to be empty
while rejected men remain
fori:=1tos
if man i is marked rejected then add i to the
proposal list for the woman j who ranks highest
on his preference list but does not appear on his
rejection list, and mark i as not rejected
forj:=1tos
if woman j’s proposal list is nonempty then
remove from j’s proposal list all men i
except the man ig who ranks highest on her
preference list, and for each such man i mark
him as rejected and add ; to his rejection list
for j:=1tos
match j with the one man on j’s proposal list
{This matching is stable.}
63. If the assignment is not stable, then there is a man m and a
woman w such that m prefers w to the woman w’ with whom
he is matched, and w prefers m to the man with whom she is
matched. But m must have proposed to w before he proposed
to w’, because he prefers the former. Because m did not end
up matched with w, she must have rejected him. Women re-
ject a suitor only when they get a better proposal, and they
eventually get matched with a pending suitor, so the woman
with whom w is matched must be better in her eyes than m,
contradicting our original assumption. Therefore the marriage
is stable.  65. Run the two programs on their inputs concur-
rently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10
b) C=4,k=7c)Nod) C =5,k=1e)C=1k=0f)C=
1Lk=2 3. x*+9x34+4x+7 < 4x*forall x > 9; witnesses
C=4k=9 5 @x?+1)/x+1)=x—-14+2/(x+1) <x
forall x > 1; witnesses C =1,k =1 7. The choices of C
and k are not unique. a)n =3,C =3,k =1 b)n = 3,
C=4k=1¢c)n=1,C=2k=1d)n=0,C=2k=1
9.x2 4+ 4x +17 < 3x3forall x > 17,50 x2 + 4x 4+ 17 is
0 (x3), with witnesses C = 3, k = 17. However, if x3 were
O (x? + 4x +17), then x® < C(x? 4 4x + 17) < 3Cx? for
some C, for all sufficiently large x, which implies that x < 3C
for all sufficiently large x, which is impossible. Hence, x3 is
not O(x2+4x +17). 11.3x*+1 < 4x* = 8(x*/2) forall
x > 1,50 3x* 4+ 1is O(x*/2), with witnesses C = 8, k = 1.
Alsox*/2 < 3x*+1forall x > 0,50 x*/2is O(3x*+1), with
witnesses C =1,k =0. 13. Because 2" < 3" foralln > 0,
it follows that 2" is O (3"), with witnesses C = 1, k = 0.
However, if 3" were O(2"), then for some C, 3" < C - 2" for
all sufficiently large . This says that C > (3/2)" for all suffi-
ciently large n, which is impossible. Hence, 3" is not O (2").
15. All functions for which there exist real numbers k and C
with | f(x)| < C for x > k. These are the functions f (x) that
are bounded for all sufficiently large x.  17. There are con-
stants C1, Co, k1, and k2 such that | f(x)| < C1]g(x)] for all
x > kyand |g(x)| < Cz]h(x)| forall x > k». Hence, for x >
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max(ky, k) it follows that | f (x)| < C1lg(x)| < C1Ca|h(x)].
This shows that f(x) is O(h(x)). 19. 2"l is 0(2");
22" s not.  21. 1000 log n, \/n, n log n, n?/1000000, 2",
3", 2n! 23. The algorithm that uses n log n operations
25.a) 0(n®) b) 0m® c)owmd-n) 27.a) On?logn)
b) O (n2(log n)?) c) O(m?") 29.a) Neither ©(x2) nor
Qx?) b)Ox?) and (x2) c) Neither ©(x?) nor £ (x2)
d) Q(x?), butnot ©(x?) e) Q(x?), butnot O (x?) f) Q(x?)
and ©(x?) 31 If f(x) is ©(g(x)), then there exist con-
stants C1 and Cz with C1jg(x)| < [f(x)] =< C2lg()l.
It follows that | f(x)| < C2|g(x)| and [g(x)| < (1/C1)| f(x)]
forx > k. Thus, f(x)is O(g(x))and g(x) is O(f(x)). Con-
versely, suppose that f(x) is O(g(x)) and g(x) is O(f(x)).
Then there are constants C1, Cz, k1, and k2 such that | f(x)| <
C1lg(x)|forx > kyand|g(x)| < Co| f (x)|forx > kp.We can
assume that C» > 0 (we can always make C larger). Then we
have (1/C2)|g(x)| < | f(x)| < C1lg(x)|forx > max(ky, k2).
Hence, f(x)is ®(g(x)). 33.If f(x)is O(g(x)),then f(x)
is both O(g(x)) and ©(g(x)). Hence, there are positive con-
stants C1, k1, Co, and kp such that | f(x)] < Cz|g(x)| for
all x > kpand |f(x)|] > Cilg(x)| forall x > kj. It fol-
lows that C1|g(x)| < [f(x)| < Cz2|g(x)| whenever x > k,
where kK = max(k1,k2). Conversely, if there are positive con-
stants C1, Co, and k such that C1|g(x)| < | f(x)| < C2|g(x)|
for x > k, then taking k1 = k» = k shows that f(x) is both
0(g(x)) and O(g(x)).

35 Y C,9(x)

f(x)

C19(0)

|
k X

37.1f f(x) is ®(1), then | f(x)| is bounded between pos-
itive constants C; and Cy. In other words, f(x) cannot
grow larger than a fixed bound or smaller than the nega-
tive of this bound and must not get closer to 0 than some
fixed bound. 39. Because f(x) is O(g(x)), there are con-
stants C and k such that |f(x)|] < Clg(x)| for x > k.
Hence, | f"(x)] < C"|g"(x)| for x > k, so f"(x) is
0O(g"(x)) by taking the constant to be C". 41. Because
f(x) and g(x) are increasing and unbounded, we can assume
f(x) > 1and g(x) > 1 for sufficiently large x. There are
constants C and k with f(x) < Cg(x) for x > k. This
implies that log f(x) < logC + log g(x) < 2log g(x)
for sufficiently large x. Hence, log f(x) is O(log g(x)).
43. By definition there are positive constraints C1, Ci,
C2, Cj, ki1, ky, ko, and k5 such that fi(x) = Ci1lgx)]
forall x > ki, filx) < Cilg@)| forall x > ki,
fo(x) = Colg(x)| forall x > ko, and fo(x) < Cjlg(x)]
forall x > kj. Adding the first and third inequalities shows
that f1(x) + fo(x) > (C1 + C2)|g(x)| for all x > k where
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k = max(k1, k2). Adding the second and fourth inequalities
shows that f1(x) 4+ f2(x) < (C1 + Cy)lg(x)| forall x > &’
where k' = max(ky, k5). Hence, fi(x) + fa(x) is ©(g(x)).
Thisis no longer true if f1 and f> can assume negative values.
45. This is false. Let fi = x2 + 2x, fo(x) = x2 + x,
and g(x) = x2. Then fi(x) and f2(x) are both O(g(x)),
but (f1 — f2)(x) is not. 47.Take f(n) to be the func-
tion with f(n) = n if n is an odd positive integer and
f(n) = 1ifnisan even positive integer and g(n) to be the
function with g(n) = 1 if n is an odd positive integer and
g(n) = n if n is an even positive integer.  49. There are
positive constants C1, Cz, C1, C5, k1, k1, k2, and k5, such that
[AA)] = Cilga(x)] forall x > ki, [fi(x)| < Cilga(x)]
forall x > ki, |f2(x)| > Calga2(x)| forall x > kp, and
| f20)] < Chlga(x)| for all x > kj. Because f> and g2
are never zero, the last two inequalities can be rewritten as
[1/f2(x)] < (1/C2)11/g2(x)| for all x > k2 and |1/f2(x)| >
(1/C)11/g2(x)| for all x > kj. Multiplying the first and
rewritten fourth inequalities shows that |f1(x)/f2(x)| >
(C1/Clg1(x)/g2(x)| for all x > max(ky, k5), and mul-
tiplying the second and rewritten third inequalities
gives |f1(x)/f2(x)| < (C1/C2)lIg1(x)/g2(x)| for all x >
max(kj, k2). It follows that f1/f> is big-Theta of g1/g».
51. There exist positive constants Ci1, Ca, k1, k2, k7, k5
such that | f(x, y)| < C1|g(x, y)| forall x > k1 and y > ko
and |f(x, y)I = Calg(x, y)| for all x > &} and y > k5.
53. (x2 4+ xy + xlog y)® < (3x%y%) = 27x5y3 for
x > landy>1, because x2 < x%y, xy < x2y, and
xlogy < x?y. Hence, (x2+xy+xlogy)® is O(x8y3).
55. For all positive real numbers x and y, |xy] < xy.
Hence, |xy] is O(xy) from the definition, taking C =1
and ky =k, =0. 57. Clearly n¢ < n¢foraln > 2;
therefore n? is O(n°). The ratio n/n° = n9=c is un-
bounded so there is no constant C such that n¢ < Cn¢ for
large n.  59. If f and g are positive-valued functions such
thatlim, . f(x)/g(x) = C < oo, then f(x) < (C+1)g(x)
for large enough x, so f(n) is O(g(n)). If that limit is oo,
then clearly f(n) is not O(g(n)). Here repeated applica-
tions of L’Hdpital’s rule shows that lim,_ o x¢/b* = 0
and limy_ oo b¥/x? = o0. 61.a)liMmyLo x2/x3 =
lim, oo 1/x = 0 b) lim oo 2985 = lim,_oo 9 =
lim,_ ~ ﬁ = 0 (using L’Hépital’s rule) c) lim,_ o ’Zc—f =
My 5505 = liMyooo ﬁ = 0 (using L’Hopital’s

rule) o) fim, oo “5 = lim, oo (141 + %) =10

63. Y

lim X109x _ o

X—= 2

xlogx

65. No. Take f(x) = 1/x2and g(x) = 1/x. 67.a)Be-
cause limy . f(x)/g(x) = 0, [f(0)|/Igx)] < 1 for
sufficiently large x. Hence, |f(x)] < |gx)| for x > k
for some constant k. Therefore, f(x) is O(g(x)). b) Let
f(x) = gx) = x.Then f(x)is O(g(x)), but f(x) is
not o(g(x)) because f(x)/g(x) = 1. 69. Because f2(x) is
o(g(x)), from Exercise 67(a) it follows that f>(x) is O (g(x)).
By Corollary 1, we have fi(x)+ f2(x)is O(g(x)). 71.We
can easily show that (n —i)(i + 1) >nfori =0,1,...,n— 1.
Hence, )2 =(n-1)((n —1)-2) - (n —2)-3)---(2-(n —
1))-(1-n)>n". Therefore, 2logn! > nlogn. 73. Compute
that log5! ~ 6.9 and (51log5)/4 =~ 2.9, so the in-
equality holds for n = 5. Assume n > 6. Because n!
is the product of all the integers from n down to 1, we
have n! > n(n — L)(n — 2) --- [n/2] (because at least
the term 2 is missing). Note that there are more than n/2
terms in this product, and each term is at least as big as
n/2. Therefore the product is greater than (n/2)"/?. Tak-
ing the log of both sides of the inequality, we have logn! >
log (2)"/* =% log % = %(logn — 1) > (nlogn) /4, because
n > 4 implieslogn — 1 > (logn)/2. 75 All are not
asymptotic.

Section 3.3

1.0 3.0n® 52n—1 7. Linear 9.0(®n)
11. a) procedure disjointpair (S, S2, ..., Sy :
subsets of {1, 2,...,n})
answer := false
fori:=1ton
for j:=i+1ton
disjoint := true
fork:=1ton
if k € S; and k € S; then disjoint := false
if disjoint then answer := true
return answer

b) 0w® 13.a)power = 1,y = 1;i := 1,
power := 2, y:=3;i:=2, power := 4,y := 15
b) 2n multiplications and » additions ~ 15. a) 210° ~103x 10°
b)10° ¢)3.96 x 10" d)3.16 x 10* e)29 f)12
17. a) 200102 b) 26010 () |2VBOL0°| A o 5 102381768
d) 60,000,000 e) 7,745,966 f)45 g)6 19.a) 36 years
b) 13 days c¢) 19 minutes 21. a)Less than 1 millisec-
ond more b) 100 milliseconds more c) 2n + 1 milliseconds
more d) 3n2 + 31 + 1 milliseconds more e) Twice as much
time f) 227+1 times as many milliseconds g) n + 1 times
as many milliseconds ~ 23. The average number of compar-
isons is 3n+ 4)/2.  25.0(logn) 27.0(@m) 29. O(n?)
31.0m) 33.0m) 35.0(log n) comparisons; O(n?)
swaps 37. O(n?2") 39.a)doubles b)increases by 1
41. Use Algorithm 1, where A and B are now n x n up-
per triangular matrices, by replacing m by n in line 1, and



