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Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed
integer b.

2. Write out the words “Basis Step.” Then show that P(b) is true, taking care that the correct
value of b is used. This completes the first part of the proof.

3. Write out the words “Inductive Step.”
4. State, and clearly identify, the inductive hypothesis, in the form “assume that P(k) is true

for an arbitrary fixed integer k ≥ b.”
5. State what needs to be proved under the assumption that the inductive hypothesis is true.

That is, write out what P(k + 1) says.
6. Prove the statement P(k + 1) making use the assumption P(k). Be sure that your proof

is valid for all integers k with k ≥ b, taking care that the proof works for small values
of k, including k = b.

7. Clearly identify the conclusion of the inductive step, such as by saying “this completes
the inductive step.”

8. After completing the basis step and the inductive step, state the conclusion, namely that
by mathematical induction, P(n) is true for all integers n with n ≥ b.

It is worthwhile to revisit each of the mathematical induction proofs in Examples 1–14 to see
how these steps are completed. It will be helpful to follow these guidelines in the solutions of the
exercises that ask for proofs by mathematical induction. The guidelines that we presented can
be adapted for each of the variants of mathematical induction that we introduce in the exercises
and later in this chapter.

Exercises

1. There are infinitely many stations on a train route. Sup-
pose that the train stops at the first station and suppose
that if the train stops at a station, then it stops at the next
station. Show that the train stops at all stations.

2. Suppose that you know that a golfer plays the first hole of
a golf course with an infinite number of holes and that if
this golfer plays one hole, then the golfer goes on to play
the next hole. Prove that this golfer plays every hole on
the course.

Use mathematical induction in Exercises 3–17 to prove sum-
mation formulae. Be sure to identify where you use the in-
ductive hypothesis.

3. Let P(n) be the statement that 12 + 22 + · · · + n2 =
n(n+ 1)(2n+ 1)/6 for the positive integer n.
a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f ) Explain why these steps show that this formula is true
whenever n is a positive integer.

4. Let P(n) be the statement that 13 + 23 + · · · + n3 =
(n(n+ 1)/2)2 for the positive integer n.
a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f ) Explain why these steps show that this formula is true
whenever n is a positive integer.

5. Prove that 12 + 32 + 52 + · · · + (2n+ 1)2 = (n+ 1)

(2n+ 1)(2n+ 3)/3 whenever n is a nonnegative integer.

6. Prove that 1 · 1! + 2 · 2! + · · · + n · n! = (n+ 1)! − 1
whenever n is a positive integer.

7. Prove that 3+ 3 · 5+ 3 · 52+ · · ·+ 3 · 5n=3(5n+1− 1)/4
whenever n is a nonnegative integer.

8. Prove that 2− 2 · 7+ 2 · 72 − · · · + 2(−7)n = (1−
(−7)n+1)/4 whenever n is a nonnegative integer.
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9. a) Find a formula for the sum of the first n even positive
integers.

b) Prove the formula that you conjectured in part (a).

10. a) Find a formula for

1

1 · 2 +
1

2 · 3 + · · · +
1

n(n+ 1)

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

11. a) Find a formula for

1

2
+ 1

4
+ 1

8
+ · · · + 1

2n

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

12. Prove that
n∑

j=0

(
−1

2

)j

= 2n+1 + (−1)n

3 · 2n

whenever n is a nonnegative integer.

13. Prove that 12 − 22 + 32 − · · · + (−1)n−1n2 = (−1)n−1

n(n+ 1)/2 whenever n is a positive integer.

14. Prove that for every positive integer n,
∑n

k= 1 k2k =
(n− 1)2n+1 + 2.

15. Prove that for every positive integer n,

1 · 2+ 2 · 3+ · · · + n(n+ 1) = n(n+ 1)(n+ 2)/3.

16. Prove that for every positive integer n,

1 · 2 · 3+ 2 · 3 · 4+ · · · + n(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2)(n+ 3)/4.

17. Prove that
∑n

j = 1 j4 = n(n+ 1)(2n+ 1)(3n2+ 3n−1)/30
whenever n is a positive integer.

Use mathematical induction to prove the inequalities in Exer-
cises 18–30.

18. Let P(n) be the statement that n! < nn, where n is an
integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f ) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.
19. Let P(n) be the statement that

1+ 1

4
+ 1

9
+ · · · + 1

n2 < 2− 1

n
,

where n is an integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.

c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f ) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.
20. Prove that 3n< n! if n is an integer greater than 6.
21. Prove that 2n > n2 if n is an integer greater than 4.
22. For which nonnegative integers n is n2 ≤ n!? Prove your

answer.
23. For which nonnegative integers n is 2n+ 3 ≤ 2n? Prove

your answer.
24. Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n− 1)]/(2 · 4 ·
· · · · 2n) whenever n is a positive integer.

∗25. Prove that if h > −1, then 1+ nh ≤ (1+ h)n for all non-
negative integers n. This is called Bernoulli’s inequality.

∗26. Suppose that a and b are real numbers with 0 < b < a.
Prove that if n is a positive integer, then an − bn ≤
nan−1(a − b).

∗27. Prove that for every positive integer n,

1+ 1√
2
+ 1√

3
+ · · · + 1√

n
> 2(
√

n+ 1− 1).

28. Prove that n2 − 7n+ 12 is nonnegative whenever n is an
integer with n ≥ 3.

In Exercises 29 and 30, Hn denotes the nth harmonic number.
∗29. Prove that H2n ≤ 1+ n whenever n is a nonnegative in-

teger.
∗30. Prove that

H1 +H2 + · · · +Hn = (n+ 1)Hn − n.

Use mathematical induction in Exercises 31–37 to prove di-
visibility facts.
31. Prove that 2 divides n2 + n whenever n is a positive in-

teger.
32. Prove that 3 divides n3 + 2n whenever n is a positive

integer.
33. Prove that 5 divides n5 − n whenever n is a nonnegative

integer.
34. Prove that 6 divides n3 − n whenever n is a nonnegative

integer.
∗35. Prove that n2 − 1 is divisible by 8 whenever n is an odd

positive integer.
∗36. Prove that 21 divides 4n+1 + 52n−1 whenever n is a pos-

itive integer.
∗37. Prove that if n is a positive integer, then 133 divides

11n+1 + 122n−1.
Use mathematical induction in Exercises 38–46 to prove re-
sults about sets.
38. Prove that if A1, A2, . . . , An and B1, B2, . . . , Bn are sets

such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n⋃

j = 1

Aj ⊆
n⋃

j = 1

Bj .
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39. Prove that if A1, A2, . . . , An and B1, B2, . . . , Bn are sets
such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n⋂

j = 1

Aj ⊆
n⋂

j = 1

Bj .

40. Prove that if A1, A2, . . . , An and B are sets, then

(A1 ∩ A2 ∩ · · · ∩ An) ∪ B

= (A1 ∪ B) ∩ (A2 ∪ B) ∩ · · · ∩ (An ∪ B).

41. Prove that if A1, A2, . . . , An and B are sets, then

(A1 ∪ A2 ∪ · · · ∪ An) ∩ B

= (A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (An ∩ B).

42. Prove that if A1, A2, . . . , An and B are sets, then

(A1 − B) ∩ (A2 − B) ∩ · · · ∩ (An − B)

= (A1 ∩ A2 ∩ · · · ∩ An)− B.

43. Prove that if A1, A2, . . . , An are subsets of a universal
set U , then

n⋃

k= 1

Ak =⋂n
k= 1 Ak.

44. Prove that if A1, A2, . . . , An and B are sets, then

(A1 − B) ∪ (A2 − B) ∪ · · · ∪ (An − B)

= (A1 ∪ A2 ∪ · · · ∪ An)− B.

45. Prove that a set with n elements has n(n− 1)/2 subsets
containing exactly two elements whenever n is an integer
greater than or equal to 2.

∗46. Prove that a set with n elements has n(n− 1)(n− 2)/6
subsets containing exactly three elements whenever n is
an integer greater than or equal to 3.

In Exercises 47 and 48 we consider the problem of placing
towers along a straight road, so that every building on the
road receives cellular service. Assume that a building receives
cellular service if it is within one mile of a tower.

47. Devise a greedy algorithm that uses the minimum number
of towers possible to provide cell service to d buildings
located at positions x1, x2, . . . , xd from the start of the
road. [Hint: At each step, go as far as possible along the
road before adding a tower so as not to leave any buildings
without coverage.]

∗48. Use mathematical induction to prove that the algorithm
you devised in Exercise 47 produces an optimal solution,
that is, that it uses the fewest towers possible to provide
cellular service to all buildings.

Exercises 49–51 present incorrect proofs using mathemati-
cal induction. You will need to identify an error in reasoning
in each exercise.

49. What is wrong with this “proof” that all horses are the
same color?
Let P(n) be the proposition that all the horses in a set
of n horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P(k) is true, so that all
the horses in any set of k horses are the same color.
Consider any k + 1 horses; number these as horses
1, 2, 3, . . . , k, k + 1. Now the first k of these horses all
must have the same color, and the last k of these must
also have the same color. Because the set of the first k

horses and the set of the last k horses overlap, all k + 1
must be the same color. This shows that P(k + 1) is true
and finishes the proof by induction.

50. What is wrong with this “proof”?
“Theorem” For every positive integer n,

∑n
i= 1 i =

(n+ 1
2 )2/2.

Basis Step: The formula is true for n = 1.

Inductive Step: Suppose that
∑n

i=1 i = (n+ 1
2 )2/2.

Then
∑n+1

i=1 i = (
∑n

i=1 i)+ (n+ 1). By the induc-
tive hypothesis,

∑n+1
i=1 i = (n+ 1

2 )2/2+ n+ 1 =
(n2 + n+ 1

4 )/2 + n + 1 = (n2 + 3n + 9
4 )/2 =

(n+ 3
2 )2/2 = [(n+ 1)+ 1

2 ]2/2, completing the induc-
tive step.

51. What is wrong with this “proof”?
“Theorem” For every positive integer n, if x and y are
positive integers with max(x, y) = n, then x = y.

Basis Step: Suppose that n = 1. If max(x, y) = 1 and x

and y are positive integers, we have x = 1 and y = 1.

Inductive Step: Let k be a positive integer. Assume that
whenever max(x, y) = k and x and y are positive inte-
gers, then x = y. Now let max(x, y) = k + 1, where x

and y are positive integers. Then max(x − 1, y − 1) = k,
so by the inductive hypothesis, x − 1 = y − 1. It follows
that x = y, completing the inductive step.

52. Suppose that m and n are positive integers with m > n

and f is a function from {1, 2, . . . , m} to {1, 2, . . . , n}.
Use mathematical induction on the variable n to show
that f is not one-to-one.

∗53. Use mathematical induction to show that n people can di-
vide a cake (where each person gets one or more separate
pieces of the cake) so that the cake is divided fairly, that
is, in the sense that each person thinks he or she got at
least (1/n)th of the cake. [Hint: For the inductive step,
take a fair division of the cake among the first k people,
have each person divide their share into what this per-
son thinks are k + 1 equal portions, and then have the
(k + 1)st person select a portion from each of the k peo-
ple. When showing this produces a fair division for k + 1
people, suppose that person k + 1 thinks that person i got
pi of the cake where

∑k
i=1 pi = 1.]

54. Use mathematical induction to show that given a set of
n+ 1 positive integers, none exceeding 2n, there is at
least one integer in this set that divides another integer in
the set.

∗55. A knight on a chessboard can move one space horizon-
tally (in either direction) and two spaces vertically (in
either direction) or two spaces horizontally (in either di-
rection) and one space vertically (in either direction).
Suppose that we have an infinite chessboard, made up
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of all squares (m, n) where m and n are nonnegative inte-
gers that denote the row number and the column number
of the square, respectively. Use mathematical induction to
show that a knight starting at (0, 0) can visit every square
using a finite sequence of moves. [Hint: Use induction
on the variable s = m+ n.]

56. Suppose that

A =
[
a 0
0 b

]
,

where a and b are real numbers. Show that

An =
[
an 0
0 bn

]

for every positive integer n.

57. (Requires calculus) Use mathematical induction to prove
that the derivative of f (x) = xn equals nxn−1 whenever
n is a positive integer. (For the inductive step, use the
product rule for derivatives.)

58. Suppose that A and B are square matrices with the prop-
erty AB = BA. Show that ABn = BnA for every positive
integer n.

59. Suppose that m is a positive integer. Use mathematical
induction to prove that if a and b are integers with a ≡ b

(mod m), then ak ≡ bk (mod m) whenever k is a nonneg-
ative integer.

60. Use mathematical induction to show that ¬(p1 ∨ p2 ∨
· · · ∨ pn) is equivalent to ¬p1 ∧¬p2 ∧ · · · ∧ ¬pn

whenever p1, p2, . . . , pn are propositions.
∗61. Show that

[(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn)]
→ [(p1 ∧ p2 ∧ · · · ∧ pn−1)→ pn]

is a tautology whenever p1, p2, . . . , pn are propositions,
where n ≥ 2.

∗62. Show that n lines separate the plane into (n2 + n+ 2)/2
regions if no two of these lines are parallel and no three
pass through a common point.

∗∗63. Let a1, a2, . . . , an be positive real numbers. The arith-
metic mean of these numbers is defined by

A = (a1 + a2 + · · · + an)/n,

and the geometric mean of these numbers is defined by

G = (a1a2 · · · an)
1/n.

Use mathematical induction to prove that A ≥ G.

64. Use mathematical induction to prove Lemma 3 of
Section 4.3, which states that if p is a prime
and p | a1a2 · · · an, where ai is an integer for
i = 1, 2, 3, . . . , n, then p | ai for some integer i.

65. Show that if n is a positive integer, then
∑

{a1,...,ak}⊆{1,2,...,n}

1

a1a2 · · · ak

= n.

(Here the sum is over all nonempty subsets of the set of
the n smallest positive integers.)

∗66. Use the well-ordering property to show that the follow-
ing form of mathematical induction is a valid method to
prove that P(n) is true for all positive integers n.

Basis Step: P(1) and P(2) are true.

Inductive Step: For each positive integer k, if P(k) and
P(k + 1) are both true, then P(k + 2) is true.

67. Show that if A1, A2, . . . , An are sets where n ≥ 2, and
for all pairs of integers i and j with 1 ≤ i < j ≤ n either
Ai is a subset of Aj or Aj is a subset of Ai , then there is
an integer i, 1 ≤ i ≤ n such that Ai is a subset of Aj for
all integers j with 1 ≤ j ≤ n.

∗68. A guest at a party is a celebrity if this person is known
by every other guest, but knows none of them. There is at
most one celebrity at a party, for if there were two, they
would know each other. A particular party may have no
celebrity. Your assignment is to find the celebrity, if one
exists, at a party, by asking only one type of question—
asking a guest whether they know a second guest. Ev-
eryone must answer your questions truthfully. That is, if
Alice and Bob are two people at the party, you can ask Al-
ice whether she knows Bob; she must answer correctly.
Use mathematical induction to show that if there are n

people at the party, then you can find the celebrity, if
there is one, with 3(n− 1) questions. [Hint: First ask a
question to eliminate one person as a celebrity. Then use
the inductive hypothesis to identify a potential celebrity.
Finally, ask two more questions to determine whether that
person is actually a celebrity.]

Suppose there are n people in a group, each aware of a scandal
no one else in the group knows about. These people commu-
nicate by telephone; when two people in the group talk, they
share information about all scandals each knows about. For
example, on the first call, two people share information, so
by the end of the call, each of these people knows about two
scandals. The gossip problem asks for G(n), the minimum
number of telephone calls that are needed for all n people to
learn about all the scandals. Exercises 69–71 deal with the
gossip problem.

69. Find G(1), G(2), G(3), and G(4).

70. Use mathematical induction to prove that G(n) ≤ 2n− 4
for n ≥ 4. [Hint: In the inductive step, have a new person
call a particular person at the start and at the end.]

∗∗71. Prove that G(n) = 2n− 4 for n ≥ 4.
∗72. Show that it is possible to arrange the numbers 1, 2, . . . , n

in a row so that the average of any two of these numbers
never appears between them. [Hint: Show that it suffices
to prove this fact when n is a power of 2. Then use math-
ematical induction to prove the result when n is a power
of 2.]

∗73. Show that if I1, I2, . . . , In is a collection of open in-
tervals on the real number line, n ≥ 2, and every pair
of these intervals has a nonempty intersection, that is,
Ii ∩ Ij �= ∅ whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n, then
the intersection of all these sets is nonempty, that is,
I1 ∩ I2 ∩ · · · ∩ In �= ∅. (Recall that an open interval is
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the set of real numbers x with a < x < b, where a and b

are real numbers with a < b.)
Sometimes we cannot use mathematical induction to prove
a result we believe to be true, but we can use mathematical
induction to prove a stronger result. Because the inductive hy-
pothesis of the stronger result provides more to work with, this
process is called inductive loading. We use inductive loading
in Exercise 74.

74. Suppose that we want to prove that

1

2
· 3

4
· · · 2n− 1

2n
<

1√
3n

for all positive integers n.
a) Show that if we try to prove this inequality using math-

ematical induction, the basis step works, but the in-
ductive step fails.

b) Show that mathematical induction can be used to
prove the stronger inequality

1

2
· 3

4
· · · 2n− 1

2n
<

1√
3n+ 1

for all integers greater than 1, which, together with a
verification for the case where n = 1, establishes the
weaker inequality we originally tried to prove using
mathematical induction.

75. Let n be an even positive integer. Show that when n peo-
ple stand in a yard at mutually distinct distances and each

person throws a pie at their nearest neighbor, it is possible
that everyone is hit by a pie.

76. Construct a tiling using right triominoes of the 4× 4
checkerboard with the square in the upper left corner re-
moved.

77. Construct a tiling using right triominoes of the 8× 8
checkerboard with the square in the upper left corner re-
moved.

78. Prove or disprove that all checkerboards of these shapes
can be completely covered using right triominoes when-
ever n is a positive integer.
a) 3× 2n b) 6× 2n

c) 3n × 3n d) 6n × 6n

∗79. Show that a three-dimensional 2n × 2n × 2n checker-
board with one 1× 1× 1 cube missing can be completely
covered by 2× 2× 2 cubes with one 1× 1× 1 cube re-
moved.

∗80. Show that an n× n checkerboard with one square re-
moved can be completely covered using right triominoes
if n > 5, n is odd, and 3 � | n.

81. Show that a 5× 5 checkerboard with a corner square re-
moved can be tiled using right triominoes.

∗82. Find a 5× 5 checkerboard with a square removed that
cannot be tiled using right triominoes. Prove that such a
tiling does not exist for this board.

83. Use the principle of mathematical induction to show that
P(n) is true for n = b, b + 1, b + 2, . . . , where b is an
integer, if P(b) is true and the conditional statement
P(k)→ P(k + 1) is true for all integers k with k ≥ b.

5.2 Strong Induction and Well-Ordering

Introduction

In Section 5.1 we introduced mathematical induction and we showed how to use it to prove a
variety of theorems. In this section we will introduce another form of mathematical induction,
called strong induction, which can often be used when we cannot easily prove a result using
mathematical induction. The basis step of a proof by strong induction is the same as a proof of
the same result using mathematical induction. That is, in a strong induction proof that P(n) is
true for all positive integers n, the basis step shows that P(1) is true. However, the inductive steps
in these two proof methods are different. In a proof by mathematical induction, the inductive
step shows that if the inductive hypothesis P(k) is true, then P(k + 1) is also true. In a proof
by strong induction, the inductive step shows that if P(j) is true for all positive integers not
exceeding k, then P(k + 1) is true. That is, for the inductive hypothesis we assume that P(j)

is true for j = 1, 2, . . . , k.
The validity of both mathematical induction and strong induction follow from the well-

ordering property in Appendix 1. In fact, mathematical induction, strong induction, and well-
ordering are all equivalent principles (as shown in Exercises 41, 42, and 43). That is, the validity
of each can be proved from either of the other two. This means that a proof using one of these
two principles can be rewritten as a proof using either of the other two principles. Just as it is
sometimes the case that it is much easier to see how to prove a result using strong induction
rather than mathematical induction, it is sometimes easier to use well-ordering than one of the


