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whichever is in shorter supply) so that the number of men
and the number of women become the same, and put these
fictitious people at the bottom of everyone’s preference lists.
c) This follows immediately from Exercise 63 in Section 3.1.
37. 5; 15 39. The first situation in Exercise 37 41. a) For
each subset S of {1, 2, . . . , n}, compute

∑
j∈S wj . Keep track

of the subset giving the largest such sum that is less than or
equal to W , and return that subset as the output of the algo-
rithm. b) The food pack and the portable stove 43. a) The
makespan is always at least as large as the load on the proces-
sor assigned to do the lengthiest job, which must be at least
maxj=1,2,...,n tj . Therefore the minimum makespan satisfies
this inequality. b) The total amount of time the processors
need to spend working on the jobs (the total load) is

∑n
j=1 tj .

Therefore the average load per processor is 1
p

∑n
j=1 tj . The

maximum load cannot be any smaller than the average, so the
minimum makespan is always at least this large. 45. Pro-
cessor 1: jobs 1, 4; processor 2: job 2; processor 3: jobs 3, 5

CHAPTER 4

Section 4.1

1. a) Yes b) No c) Yes d) No 3. Suppose that a | b. Then
there exists an integer k such that ka = b. Because a(ck) = bc

it follows that a | bc. 5. If a | b and b | a, there are integers
c and d such that b = ac and a = bd. Hence, a = acd.
Because a �= 0 it follows that cd = 1. Thus either c = d = 1
or c = d = −1. Hence, either a = b or a = −b. 7. Because
ac | bc there is an integer k such that ack = bc. Hence, ak = b,
so a | b. 9. a) 2, 5 b) −11, 10 c) 34, 7 d) 77, 0 e) 0, 0
f) 0, 3 g) −1, 2 h) 4, 0 11. a) 7:00 b) 8:00 c) 10:00
13. a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 15. If a mod m =
b mod m, then a and b have the same remainder when di-
vided by m. Hence, a = q1m + r and b = q2m + r , where
0 ≤ r < m. It follows that a−b = (q1−q2)m, so m | (a−b).
It follows that a ≡ b (mod m). 17. There is some b with
(b − 1)k < n ≤ bk. Hence, (b − 1)k ≤ n − 1 < bk. Divide
by k to obtain b− 1 < n/k ≤ b and b− 1 ≤ (n− 1)/k < b.
Hence, �n/k� = b and �(n− 1)/k� = b− 1. 19. x mod m

if x mod m ≤ �m/2� and (x mod m) − m if x mod m >

�m/2� 21. a) 1 b) 2 c) 3 d) 9 23. a) 1, 109 b) 40,
89 c) −31, 222 d) −21, 38259 25. a) −15 b) −7 c) 140
27. −1,−26,−51,−76, 24, 49, 74, 99 29. a) No b) No
c) Yes d) No 31. a) 13 a) 6 33. a) 9 b) 4 c) 25 d) 0
35. Let m = tn. Because a ≡ b (mod m) there exists an
integer s such that a = b + sm. Hence, a = b + (st)n,
so a ≡ b (mod n). 37. a) Let m = c = 2, a = 0,
and b = 1. Then 0 = ac ≡ bc = 2 (mod 2), but
0 = a �≡ b = 1 (mod 2). b) Let m = 5, a = b = 3, c = 1,
and d = 6. Then 3 ≡ 3 (mod 5) and 1 ≡ 6 (mod 5), but
31 = 3 �≡ 4 ≡ 729 = 36 (mod 5). 39. By Exercise 38 the
sum of two squares must be either 0 + 0 = 0, 0 + 1 = 1,
or 1 + 1 = 2, modulo 4, never 3, and therefore not of the
form 4k + 3. 41. Because a ≡ b (mod m), there exists an

integer s such that a = b + sm, so a − b = sm. Then
ak − bk = (a − b)(ak−1 + ak−2b + · · · + abk−2 + bk−1),
k ≥ 2, is also a multiple of m. It follows that ak ≡ bk (mod m).
43. To prove closure, note that a ·m b = (a ·b) mod m, which
by definition is an element of Zm. Multiplication is associa-
tive because (a ·m b) ·m c and a ·m (b ·m c) both equal
(a · b · c) mod m and multiplication of integers is associa-
tive. Similarly, multiplication in Zm is commutative because
multiplication in Z is commutative, and 1 is the multiplicative
identity for Zm because 1 is the multiplicative identity for Z.
45. 0+50 = 0, 0+51 = 1, 0+52 = 2, 0+53 = 3, 0+54 =
4; 1+51 = 2, 1+52 = 3, 1+53 = 4, 1+54 = 0; 2+52 =
4, 2+53 = 0, 2+54 = 1; 3+53 = 1, 3+54 = 2; 4+44 = 3
and 0·50 = 0, 0·51 = 0, 0·52 = 0, 0·53 = 0, 0·54 = 0; 1·51 =
1, 1·52 = 2, 1·53 = 3, 1·54 = 4; 2·52 = 4, 2·53 = 1, 2·54 =
3; 3·53 = 4, 3·54 = 2; 4·54 = 1 47. f is onto but not
one-to-one (unless d = 1); g is neither.

Section 4.2

1. a) 1110 0111 b) 1 0001 1011 0100 c) 1 0111 11010110
1100 3. a) 31 b) 513 c) 341 d) 26,896 5. a) 1 0111
1010 b) 11 1000 0100 c) 1 0001 0011 d) 101 0000
1111 7. a) 1000 0000 1110 b) 1 0011 0101 1010 1011
c) 10101011 1011 1010 d) 1101 1110 1111 1010 11001110
1101 9. 1010 1011 1100 1101 1110 1111 11. (B7B)16
13. Adding up to three leading 0s if necessary, write the binary
expansion as (. . . b23b22b21b20b13b12b11b10b03b02b01b00)2.
The value of this numeral is b00 + 2b01 + 4b02 + 8b03 +
24b10 + 25b11 + 26b12 + 27b13 + 28b20 + 29b21 + 210b22 +
211b23 + · · · , which we can rewrite as b00 +
2b01 + 4b02 + 8b03 + (b10 + 2b11 + 4b12 + 8b13) ·
24 + (b20 + 2b21 + 4b22 + 8b23) · 28 + · · · . Now
(bi3bi2bi1bi0)2 translates into the hexadecimal digit hi .
So our number is h0 + h1 · 24 + h2 · 28 + · · · =
h0 + h1 · 16 + h2 · 162 + · · · , which is the hex-
adecimal expansion (. . . h1h1h0)16. 15 Adding up to
two leading 0s if necessary, write the binary expansion as
(. . . b22b21b20b12b11b10b02b01b00)2. The value of this nu-
meral is b00+2b01+4b02+23b10+24b11+25b12+26b20+
27b21 + 28b22 + · · · , which we can rewrite as b00 + 2b01 +
4b02+(b10+2b11+4b12) ·23+(b20+2b21+4b22) ·26+· · · .
Now (bi2bi1bi0)2 translates into the octal digit hi . So our num-
ber is h0+h1 ·23+h2 ·26+· · · = h0+h1 ·8+h2 ·82+· · · ,
which is the octal expansion (. . . h1h1h0)8. 17. 1 1101
1100 1010 1101 0001, 1273)8 19. Convert the given octal
numeral to binary, then convert from binary to hexadecimal
using Example 7. 21. a) 1011 1110, 10 0001 0000 0001
b) 1 1010 1100, 1011 0000 0111 0011 c) 100 1001 1010,
101 0010 1001 0110 0000 d) 110 0000 0000,
1000 0000 0001 1111 1111 23. a) 1132, 144,305 b) 6273,
2,134,272 c) 2110, 1,107,667 d) 57,777, 237,326,216
25. 436 27. 27 29. The binary expansion of the integer is
the unique such sum. 31. Let a = (an−1an−2 . . . a1a0)10.
Then a = 10n−1an−1 + 10n−2an−2 + · · · + 10a1 + a0
≡ an−1 + an−2 + · · · + a1 + a0 (mod 3), because
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10j ≡ 1 (mod 3)) for all nonnegative integers j . It fol-
lows that 3 | a if and only if 3 divides the sum of the dec-
imal digits of a. 33. Let a = (an−1an−2 . . . a1a0)2. Then
a = a0 + 2a1 + 22a2 + · · · + 2n−1an−1 ≡ a0 − a1 + a2−
a3 + · · · ± an−1 (mod 3). It follows that a is divisible by
3 if and only if the sum of the binary digits in the even-
numbered positions minus the sum of the binary digits in the
odd-numbered positions is divisible by 3. 35. a) −6 b) 13
c) −14 d) 0 37. The one’s complement of the sum is found
by adding the one’s complements of the two integers except
that a carry in the leading bit is used as a carry to the last bit
of the sum. 39. If m ≥ 0, then the leading bit an−1 of the
one’s complement expansion of m is 0 and the formula reads
m =∑n−2

i=0 ai2i . This is correct because the right-hand side
is the binary expansion of m. When m is negative, the leading
bit an−1 of the one’s complement expansion of m is 1. The
remaining n− 1 bits can be obtained by subtracting−m from
111 . . . 1 (where there are n− 1 1s), because subtracting a bit
from 1 is the same as complementing it. Hence, the bit string
an−2 . . . a0 is the binary expansion of (2n−1 − 1) − (−m).
Solving the equation (2n−1 − 1) − (−m) = ∑n−2

i=0 ai2i for
m gives the desired equation because an−1 = 1. 41. a) −7
b) 13 c) −15 d) −1 43. To obtain the two’s complement
representation of the sum of two integers, add their two’s
complement representations (as binary integers are added)
and ignore any carry out of the leftmost column. However,
the answer is invalid if an overflow has occurred. This happens
when the leftmost digits in the two’s complement representa-
tion of the two terms agree and the leftmost digit of the answer
differs. 45. If m ≥ 0, then the leading bit an−1 is 0 and the
formula reads m =∑n−2

i=0 ai2i . This is correct because the
right-hand side is the binary expansion of m. If m < 0, its
two’s complement expansion has 1 as its leading bit and the
remaining n−1 bits are the binary expansion of 2n−1 − (−m).
This means that (2n−1)− (−m) =∑n−2

i=0 ai2i . Solving for m

gives the desired equation because an−1 = 1. 47. 4n

49. procedure Cantor(x: positive integer)
n := 1; f := 1
while (n+ 1) · f ≤ x

n := n+ 1
f := f · n

y := x

while n > 0
an := �y/f �
y := y − an · f
f := f/n

n := n− 1
{x = ann! + an−1(n− 1)! + · · · + a11!}

51. First step: c = 0, d = 0, s0 = 1; second step: c = 0,
d = 1, s1 = 0; third step: c = 1, d = 1, s2 = 0; fourth step:
c = 1, d = 1, s3 = 0; fifth step: c = 1, d = 1, s4 = 1; sixth
step: c = 1, s5 = 1

53. procedure subtract(a, b: positive integers, a > b,
a = (an−1an−2 . . . a1a0)2,
b = (bn−1bn−2 . . . b1b0)2)

B := 0 {B is the borrow}
for j := 0 to n− 1

if aj ≥ bj + B then
sj := aj − bj − B

B := 0
else
sj := aj + 2− bj − B

B := 1
{(sn−1sn−2 . . . s1s0)2 is the difference}

55. procedure compare(a, b: positive integers,
a = (anan−1 . . . a1a0)2,
b = (bnbn−1 . . . b1b0)2)

k := n

while ak = bk and k > 0
k := k − 1

if ak = bk then print “a equals b”
if ak > bk then print “a is greater than b”
if ak < bk then print “a is less than b”

57. O(log n) 59. The only time-consuming part of the al-
gorithm is the while loop, which is iterated q times. The work
done inside is a subtraction of integers no bigger than a, which
has log a bits. The result now follows from Example 9.

Section 4.3

1. 29, 71, 97 prime; 21, 111, 143 not prime 3. a) 23 · 11
b) 2 · 32 · 7 c) 36 d) 7 · 11 · 13 e) 11 · 101 f) 2 · 33·
5 · 7 · 13 · 37 5. 28 · 34 · 52 · 7
7. procedure primetester(n : integer greater than 1)

isprime := true
d := 2
while isprime and d ≤ √n

if n mod d = 0 then isprime := false
else d := d + 1

return isprime

9. Write n = rs, where r > 1 and s > 1. Then 2n − 1 =
2rs−1 = (2r )s−1 = (2r−1)((2r )s−1+(2r )s−2+(2r )s−3+
· · · + 1). The first factor is at least 22 − 1 = 3 and the second
factor is at least 22 + 1 = 5. This provides a factoring of
2n− 1 into two factors greater than 1, so 2n− 1 is composite.
11. Suppose that log2 3 = a/b where a, b ∈ Z+ and b �= 0.
Then 2a/b = 3, so 2a = 3b. This violates the fundamental
theorem of arithmetic. Hence, log2 3 is irrational. 13. 3, 5,
and 7 are primes of the desired form. 15. 1, 7, 11, 13, 17,
19, 23, 29 17. a) Yes b) No c) Yes d) Yes 19. Suppose
that n is not prime, so that n = ab, where a and b are inte-
gers greater than 1. Because a > 1, by the identity in the hint,
2a−1 is a factor of 2n−1 that is greater than 1, and the second
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factor in this identity is also greater than 1. Hence, 2n − 1 is
not prime. 21. a) 2 b) 4 c) 12 23. φ(pk) = pk − pk−1

25. a) 35 · 53 b) 1 c) 2317 d) 41 · 43 · 53 e) 1 f) 1111
27. a) 211 · 37 · 59 · 73 b) 29 · 37 · 55 · 73 · 11 ·
13 · 17 c) 2331 d) 41 · 43 · 53 e) 212313517721 f) Undefined
29. gcd (92928, 123552) = 1056; lcm(92928, 123552) =
10,872,576; both products are 11,481,440,256. 31. Because
min(x, y) + max(x, y) = x + y, the exponent of pi in
the prime factorization of gcd(a, b) · lcm(a, b) is the sum of
the exponents of pi in the prime factorizations of a and b.
33. a) 6 b) 3 c) 11 d) 3 e) 40 f) 12 35. 9 37. By Exer-
cise 36 it follows that gcd(2b − 1, (2a − 1) mod (2b − 1)) =
gcd(2b − 1, 2a mod b − 1). Because the exponents involved
in the calculation are b and a mod b, the same as the quan-
tities involved in computing gcd(a, b), the steps used by the
Euclidean algorithm to compute gcd(2a − 1, 2b − 1) run in
parallel to those used to compute gcd(a, b) and show that
gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1. 39. a) 1 =
(−1) · 10 + 1 · 11 b) 1 = 21 · 21 + (−10) · 44
c) 12 = (−1) · 36 + 48 d) 1 = 13 · 55 + (−21) · 34
e) 3 = 11·213+(−20)·117 f) 223 = 1·0+1·223 g) 1= 37·
2347 + (−706) · 123 h) 2= 1128 · 3454 +(−835) · 4666
i) 1= 2468 · 9999+(−2221)·11111 41. (−3)·26+1·91=
13 43. 34 · 144+ (−55) · 89 = 1

45. procedure extended Euclidean(a, b: positive integers)
x := a

y := b

oldolds := 1
olds := 0
oldoldt := 0
oldt := 1
while y �= 0
q := x div y

r := x mod y

x := y

y := r

s := oldolds− q · olds
t := oldoldt− q · oldt
oldolds := olds
oldoldt := oldt
olds := s

oldt := t

{gcd(a, b) is x, and (oldolds)a+ (oldoldt)b = x}
47. a) an = 1 if n is prime and an = 0 otherwise. b) an is the
smallest prime factor of n with a1 = 1. c) an is the number of
positive divisors of n. d) an = 1 if n has no divisors that are
perfect squares greater than 1 and an = 0 otherwise. e) an is
the largest prime less than or equal to n. f) an is the product of
the first n − 1 primes. 49. Because every second integer is
divisible by 2, the product is divisible by 2. Because every third
integer is divisible by 3, the product is divisible by 3. Therefore
the product has both 2 and 3 in its prime factorization and is
therefore divisible by 3·2 = 6. 51. n = 1601 is a counterex-
ample. 53 Setting k = a+b+1 will produce the composite
number a(a+b+1)+b = a2+ab+a+b = (a+1)(a+b).

55. Suppose that there are only finitely many primes of the
form 4k + 3, namely q1, q2, . . . , qn, where q1 = 3, q2 = 7,
and so on. Let Q = 4q1q2 · · · qn−1. Note that Q is of the form
4k + 3 (where k = q1q2 · · · qn − 1). If Q is prime, then we
have found a prime of the desired form different from all those
listed. If Q is not prime, then Q has at least one prime factor
not in the list q1, q2, . . . , qn, because the remainder when Q

is divided by qj is qj − 1, and qj − 1 �= 0. Because all odd
primes are either of the form 4k+1 or of the form 4k+3, and
the product of primes of the form 4k + 1 is also of this form
(because (4k+1)(4m+1) = 4(4km+k+m)+1), there must
be a factor of Q of the form 4k + 3 different from the primes
we listed. 57. Given a positive integer x, we show that there
is exactly one positive rational number m/n (in lowest terms)
such that K(m/n)= x. From the prime factorization of x, read
off the m and n such that K(m/n) = x. The primes that occur
to even powers are the primes that occur in the prime factor-
ization of m, with the exponents being half the corresponding
exponents in x; and the primes that occur to odd powers are
the primes that occur in the prime factorization of n, with the
exponents being half of one more than the exponents in x.

Section 4.4

1. 15 · 7 = 105 ≡ 1 (mod 26) 3. 7 5. a) 7 b) 52 c) 34
d) 73 7. Suppose that b and c are both inverses of a modulo
m. Then ba ≡ 1 (mod m) and ca ≡ 1 (mod m). Hence,
ba ≡ ca (mod m). Because gcd(a, m) = 1 it follows by The-
orem 7 in Section 4.3 that b ≡ c (mod m). 9. 8 11. a) 67
b) 88 c) 146 13. 3 and 6 15. Let m′ = m/ gcd(c, m).
Because all the common factors of m and c are divided out of
m to obtain m′, it follows that m′ and c are relatively prime.
Because m divides ac − bc = (a − b)c, it follows that m′
divides (a − b)c. By Lemma 3 in Section 4.3, we see that
m′ divides a − b, so a ≡ b (mod m′). 17. Suppose that
x2 ≡ 1 (mod p). Then p divides x2 − 1 = (x + 1)(x − 1).
By Lemma 2 it follows that p | x + 1 or p | x − 1, so
x ≡ −1 (mod p) or x ≡ 1 (mod p). 19. a) Suppose that
ia ≡ ja (mod p), where 1 ≤ i < j < p. Then p divides
ja− ia = a(j − i). By Theorem 1, because a is not divisible
by p, p divides j − i, which is impossible because j − i is
a positive integer less than p. b) By part (a), because no two
of a, 2a, . . . , (p − 1)a are congruent modulo p, each must be
congruent to a different number from 1 to p−1. It follows that
a ·2a ·3a · · · · · (p−1) ·a ≡ 1 ·2 ·3 · · · · · (p−1) (mod p). It
follows that (p−1)! ·ap−1 ≡ p−1 (mod p). c) By Wilson’s
theorem and part (b), if p does not divide a, it follows that
(−1) · ap−1 ≡ −1 (mod p). Hence, ap−1 ≡ 1 (mod p). d) If
p | a, then p | ap . Hence, ap ≡ a ≡ 0 (mod p). If p does not
divide a, then ap−1 ≡ a (mod p), by part (c). Multiplying
both sides of this congruence by a gives ap ≡ a (mod p).
21. All integers of the form 323+ 330k, where k is an integer
23. All integers of the form 53+ 60k, where k is an integer


