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showed that the principle of mathematical induction follows from the well-ordering property.
The other parts of this equivalence are left as Exercises 31, 42, and 43.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative integers has a
least element.

The well-ordering property can often be used directly in proofs.

EXAMPLE 5 Use the well-ordering property to prove the division algorithm. Recall that the division algorithm
states that if a is an integer and d is a positive integer, then there are unique integers q and r

with 0 ≤ r < d and a = dq + r .

Solution: Let S be the set of nonnegative integers of the form a − dq, where q is an integer. This
set is nonempty because −dq can be made as large as desired (taking q to be a negative integer
with large absolute value). By the well-ordering property, S has a least element r = a − dq0.

The integer r is nonnegative. It is also the case that r < d . If it were not, then there would
be a smaller nonnegative element in S, namely, a − d(q0 + 1). To see this, suppose that r ≥ d.
Because a = dq0 + r , it follows that a − d(q0 + 1) = (a − dq0)− d = r − d ≥ 0. Conse-
quently, there are integers q and r with 0 ≤ r < d . The proof that q and r are unique is left as
Exercise 37. ▲

EXAMPLE 6 In a round-robin tournament every player plays every other player exactly once and each match
has a winner and a loser. We say that the players p1, p2, . . . , pm form a cycle if p1 beats p2, p2
beats p3, . . . , pm−1 beats pm, and pm beats p1. Use the well-ordering principle to show that if
there is a cycle of length m (m ≥ 3) among the players in a round-robin tournament, there must
be a cycle of three of these players.

Solution: We assume that there is no cycle of three players. Because there is at least one cycle
in the round-robin tournament, the set of all positive integers n for which there is a cycle of
length n is nonempty. By the well-ordering property, this set of positive integers has a least
element k, which by assumption must be greater than three. Consequently, there exists a cycle
of players p1, p2, p3, . . . , pk and no shorter cycle exists.

Because there is no cycle of three players, we know that k > 3. Consider the first three
elements of this cycle, p1, p2, and p3. There are two possible outcomes of the match between
p1 and p3. If p3 beats p1, it follows that p1, p2, p3 is a cycle of length three, contradicting
our assumption that there is no cycle of three players. Consequently, it must be the case that
p1 beats p3. This means that we can omit p2 from the cycle p1, p2, p3, . . . , pk to obtain the
cycle p1, p3, p4, . . . , pk of length k − 1, contradicting the assumption that the smallest cycle
has length k. We conclude that there must be a cycle of length three. ▲

Exercises

1. Use strong induction to show that if you can run one mile
or two miles, and if you can always run two more miles
once you have run a specified number of miles, then you
can run any number of miles.

2. Use strong induction to show that all dominoes fall in an
infinite arrangement of dominoes if you know that the
first three dominoes fall, and that when a domino falls,
the domino three farther down in the arrangement also
falls.

3. Let P(n) be the statement that a postage of n cents can be
formed using just 3-cent stamps and 5-cent stamps. The

parts of this exercise outline a strong induction proof that
P(n) is true for n ≥ 8.
a) Show that the statements P(8), P(9), and P(10) are

true, completing the basis step of the proof.
b) What is the inductive hypothesis of the proof?
c) What do you need to prove in the inductive step?
d) Complete the inductive step for k ≥ 10.
e) Explain why these steps show that this statement is

true whenever n ≥ 8.
4. Let P(n) be the statement that a postage of n cents can be

formed using just 4-cent stamps and 7-cent stamps. The
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parts of this exercise outline a strong induction proof that
P(n) is true for n ≥ 18.
a) Show statements P(18), P(19), P(20), and P(21)

are true, completing the basis step of the proof.

b) What is the inductive hypothesis of the proof?

c) What do you need to prove in the inductive step?

d) Complete the inductive step for k ≥ 21.

e) Explain why these steps show that this statement is
true whenever n ≥ 18.

5. a) Determine which amounts of postage can be formed
using just 4-cent and 11-cent stamps.

b) Prove your answer to (a) using the principle of math-
ematical induction. Be sure to state explicitly your
inductive hypothesis in the inductive step.

c) Prove your answer to (a) using strong induction. How
does the inductive hypothesis in this proof differ from
that in the inductive hypothesis for a proof using math-
ematical induction?

6. a) Determine which amounts of postage can be formed
using just 3-cent and 10-cent stamps.

b) Prove your answer to (a) using the principle of math-
ematical induction. Be sure to state explicitly your
inductive hypothesis in the inductive step.

c) Prove your answer to (a) using strong induction. How
does the inductive hypothesis in this proof differ from
that in the inductive hypothesis for a proof using math-
ematical induction?

7. Which amounts of money can be formed using just two-
dollar bills and five-dollar bills? Prove your answer using
strong induction.

8. Suppose that a store offers gift certificates in denomina-
tions of 25 dollars and 40 dollars. Determine the possible
total amounts you can form using these gift certificates.
Prove your answer using strong induction.

∗9. Use strong induction to prove that
√

2 is irrational. [Hint:
Let P(n) be the statement that

√
2 �= n/b for any positive

integer b.]

10. Assume that a chocolate bar consists of n squares ar-
ranged in a rectangular pattern. The entire bar, a smaller
rectangular piece of the bar, can be broken along a vertical
or a horizontal line separating the squares. Assuming that
only one piece can be broken at a time, determine how
many breaks you must successively make to break the bar
into n separate squares. Use strong induction to prove
your answer.

11. Consider this variation of the game of Nim. The game
begins with n matches. Two players take turns removing
matches, one, two, or three at a time. The player remov-
ing the last match loses. Use strong induction to show
that if each player plays the best strategy possible, the
first player wins if n = 4j , 4j + 2, or 4j + 3 for some
nonnegative integer j and the second player wins in the
remaining case when n = 4j + 1 for some nonnegative
integer j .

12. Use strong induction to show that every positive integer n

can be written as a sum of distinct powers of two, that is,
as a sum of a subset of the integers 20= 1, 21= 2, 22= 4,
and so on. [Hint: For the inductive step, separately con-
sider the case where k + 1 is even and where it is odd.
When it is even, note that (k + 1)/2 is an integer.]

∗13. A jigsaw puzzle is put together by successively joining
pieces that fit together into blocks. A move is made each
time a piece is added to a block, or when two blocks
are joined. Use strong induction to prove that no matter
how the moves are carried out, exactly n− 1 moves are
required to assemble a puzzle with n pieces.

14. Suppose you begin with a pile of n stones and split this
pile into n piles of one stone each by successively split-
ting a pile of stones into two smaller piles. Each time you
split a pile you multiply the number of stones in each
of the two smaller piles you form, so that if these piles
have r and s stones in them, respectively, you compute
rs. Show that no matter how you split the piles, the sum
of the products computed at each step equals n(n− 1)/2.

15. Prove that the first player has a winning strategy for the
game of Chomp, introduced in Example 12 in Section 1.8,
if the initial board is square. [Hint: Use strong induction
to show that this strategy works. For the first move, the
first player chomps all cookies except those in the left and
top edges. On subsequent moves, after the second player
has chomped cookies on either the top or left edge, the
first player chomps cookies in the same relative positions
in the left or top edge, respectively.]

∗16. Prove that the first player has a winning strategy for the
game of Chomp, introduced in Example 12 in Section 1.8,
if the initial board is two squares wide, that is, a 2× n

board. [Hint: Use strong induction. The first move of the
first player should be to chomp the cookie in the bottom
row at the far right.]

17. Use strong induction to show that if a simple polygon
with at least four sides is triangulated, then at least two
of the triangles in the triangulation have two sides that
border the exterior of the polygon.

∗18. Use strong induction to show that when a simple poly-
gon P with consecutive vertices v1, v2, . . . , vn is trian-
gulated into n− 2 triangles, the n− 2 triangles can be
numbered 1, 2, . . . , n− 2 so that vi is a vertex of triangle
i for i = 1, 2, . . . , n− 2.

∗19. Pick’s theorem says that the area of a simple poly-
gon P in the plane with vertices that are all lattice
points (that is, points with integer coordinates) equals
I (P )+B(P )/2− 1, where I (P ) and B(P ) are the
number of lattice points in the interior of P and on the
boundary of P , respectively. Use strong induction on the
number of vertices of P to prove Pick’s theorem. [Hint:
For the basis step, first prove the theorem for rectangles,
then for right triangles, and finally for all triangles by
noting that the area of a triangle is the area of a larger
rectangle containing it with the areas of at most three tri-
angles subtracted. For the inductive step, take advantage
of Lemma 1.]
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∗∗20. Suppose that P is a simple polygon with vertices
v1, v2, . . . , vn listed so that consecutive vertices are con-
nected by an edge, and v1 and vn are connected by an edge.
A vertex vi is called an ear if the line segment connecting
the two vertices adjacent to vi is an interior diagonal of the
simple polygon. Two ears vi and vj are called nonover-
lapping if the interiors of the triangles with vertices vi

and its two adjacent vertices and vj and its two adjacent
vertices do not intersect. Prove that every simple polygon
with at least four vertices has at least two nonoverlapping
ears.

21. In the proof of Lemma 1 we mentioned that many in-
correct methods for finding a vertex p such that the
line segment bp is an interior diagonal of P have been
published. This exercise presents some of the incorrect
ways p has been chosen in these proofs. Show, by con-
sidering one of the polygons drawn here, that for each of
these choices of p, the line segment bp is not necessarily
an interior diagonal of P .
a) p is the vertex of P such that the angle ∠abp is small-

est.
b) p is the vertex of P with the least x-coordinate (other

than b).
c) p is the vertex of P that is closest to b.

b

a

p

q

r

c

s

b

a

d
c

f

g
p

e

h

Exercises 22 and 23 present examples that show inductive
loading can be used to prove results in computational geom-
etry.

∗22. Let P(n) be the statement that when nonintersecting di-
agonals are drawn inside a convex polygon with n sides,
at least two vertices of the polygon are not endpoints of
any of these diagonals.
a) Show that when we attempt to prove P(n) for all inte-

gersnwithn ≥ 3 using strong induction, the inductive
step does not go through.

b) Show that we can prove that P(n) is true for all inte-
gers n with n ≥ 3 by proving by strong induction the
stronger assertion Q(n), for n ≥ 4, where Q(n) states
that whenever nonintersecting diagonals are drawn in-
side a convex polygon with n sides, at least two non-
adjacent vertices are not endpoints of any of these
diagonals.

23. Let E(n) be the statement that in a triangulation of a sim-
ple polygon with n sides, at least one of the triangles in
the triangulation has two sides bordering the exterior of
the polygon.

a) Explain where a proof using strong induction that
E(n) is true for all integers n ≥ 4 runs into difficulties.

b) Show that we can prove that E(n) is true for all inte-
gers n ≥ 4 by proving by strong induction the stronger
statement T (n) for all integers n ≥ 4, which states that
in every triangulation of a simple polygon, at least two
of the triangles in the triangulation have two sides bor-
dering the exterior of the polygon.

∗24. A stable assignment, defined in the preamble to Exer-
cise 60 in Section 3.1, is called optimal for suitors if no
stable assignment exists in which a suitor is paired with
a suitee whom this suitor prefers to the person to whom
this suitor is paired in this stable assignment. Use strong
induction to show that the deferred acceptance algorithm
produces a stable assignment that is optimal for suitors.

25. Suppose that P(n) is a propositional function. Determine
for which positive integers n the statement P(n) must be
true, and justify your answer, if
a) P(1) is true; for all positive integers n, if P(n) is true,

then P(n+ 2) is true.
b) P(1) and P(2) are true; for all positive integers n, if

P(n) and P(n+ 1) are true, then P(n+ 2) is true.
c) P(1) is true; for all positive integers n, if P(n) is true,

then P(2n) is true.
d) P(1) is true; for all positive integers n, if P(n) is true,

then P(n+ 1) is true.
26. Suppose that P(n) is a propositional function. Determine

for which nonnegative integers n the statement P(n) must
be true if
a) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n+ 2) is true.
b) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n+ 3) is true.
c) P(0) and P(1) are true; for all nonnegative integers n,

if P(n) and P(n+ 1) are true, then P(n+ 2) is true.
d) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n+ 2) and P(n+ 3) are true.
27. Show that if the statement P(n) is true for infinitely many

positive integers n and P(n+ 1)→ P(n) is true for all
positive integers n, then P(n) is true for all positive inte-
gers n.

28. Let b be a fixed integer and j a fixed positive inte-
ger. Show that if P(b), P (b + 1), . . . , P (b + j) are true
and [P(b) ∧ P(b + 1) ∧ · · · ∧ P(k)] →P(k + 1) is true
for every integer k ≥ b + j , then P(n) is true for all
integers n with n ≥ b.

29. What is wrong with this “proof” by strong induction?

“Theorem” For every nonnegative integer n, 5n = 0.

Basis Step: 5 · 0 = 0.

Inductive Step: Suppose that 5j = 0 for all nonneg-
ative integers j with 0 ≤ j ≤ k. Write k + 1 = i + j ,
where i and j are natural numbers less than k + 1. By the
inductive hypothesis, 5(k + 1) = 5(i + j) = 5i + 5j =
0+ 0 = 0.
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∗30. Find the flaw with the following “proof” that an = 1 for
all nonnegative integers n, whenever a is a nonzero real
number.

Basis Step: a0 = 1 is true by the definition of a0.

Inductive Step: Assume that aj = 1 for all nonnegative
integers j with j ≤ k. Then note that

ak+1 = ak · ak

ak−1 =
1 · 1

1
= 1.

∗31. Show that strong induction is a valid method of proof by
showing that it follows from the well-ordering property.

32. Find the flaw with the following “proof” that every
postage of three cents or more can be formed using just
three-cent and four-cent stamps.

Basis Step: We can form postage of three cents with a
single three-cent stamp and we can form postage of four
cents using a single four-cent stamp.

Inductive Step: Assume that we can form postage
of j cents for all nonnegative integers j with j ≤ k us-
ing just three-cent and four-cent stamps. We can then
form postage of k + 1 cents by replacing one three-cent
stamp with a four-cent stamp or by replacing two four-
cent stamps by three three-cent stamps.

33. Show that we can prove that P(n, k) is true for all pairs
of positive integers n and k if we show
a) P(1, 1) is true and P(n, k)→ [P(n+ 1, k) ∧

P(n, k + 1)] is true for all positive integers n and k.
b) P(1, k) is true for all positive integers k, and

P(n, k)→ P(n+ 1, k) is true for all positive inte-
gers n and k.

c) P(n, 1) is true for all positive integers n, and
P(n, k)→ P(n, k + 1) is true for all positive inte-
gers n and k.

34. Prove that
∑n

j=1 j (j + 1)(j + 2) · · · (j + k − 1) =
n(n+ 1)(n+ 2) · · · (n+ k)/(k + 1) for all positive inte-
gers k and n. [Hint: Use a technique from Exercise 33.]

∗35. Show that if a1, a2, . . . , an are n distinct real numbers, ex-
actly n− 1 multiplications are used to compute the prod-
uct of these n numbers no matter how parentheses are
inserted into their product. [Hint: Use strong induction
and consider the last multiplication.]

∗36. The well-ordering property can be used to show that there
is a unique greatest common divisor of two positive in-
tegers. Let a and b be positive integers, and let S be

the set of positive integers of the form as + bt , where s

and t are integers.
a) Show that S is nonempty.
b) Use the well-ordering property to show that S has a

smallest element c.
c) Show that if d is a common divisor of a and b, then d

is a divisor of c.
d) Show that c | a and c | b. [Hint: First, assume that

c � | a. Then a = qc + r , where 0 < r < c. Show that
r ∈ S, contradicting the choice of c.]

e) Conclude from (c) and (d) that the greatest common
divisor of a and b exists. Finish the proof by showing
that this greatest common divisor is unique.

37. Let a be an integer and d be a positive integer. Show
that the integers q and r with a = dq + r and 0 ≤ r < d,
which were shown to exist in Example 5, are unique.

38. Use mathematical induction to show that a rectangu-
lar checkerboard with an even number of cells and two
squares missing, one white and one black, can be covered
by dominoes.

∗∗39. Can you use the well-ordering property to prove the state-
ment: “Every positive integer can be described using no
more than fifteen English words”? Assume the words
come from a particular dictionary of English. [Hint: Sup-
pose that there are positive integers that cannot be de-
scribed using no more than fifteen English words. By
well ordering, the smallest positive integer that cannot
be described using no more than fifteen English words
would then exist.]

40. Use the well-ordering principle to show that if x and y

are real numbers with x < y, then there is a rational
number r with x < r < y. [Hint: Use the Archimedean
property, given in Appendix 1, to find a positive
integer A with A > 1/(y − x). Then show that there is
a rational number r with denominator A between x and
y by looking at the numbers �x� + j/A, where j is a
positive integer.]

∗41. Show that the well-ordering property can be proved when
the principle of mathematical induction is taken as an ax-
iom.

∗42. Show that the principle of mathematical induction and
strong induction are equivalent; that is, each can be shown
to be valid from the other.

∗43. Show that we can prove the well-ordering property when
we take strong induction as an axiom instead of taking
the well-ordering property as an axiom.

5.3 Recursive Definitions and Structural Induction

Introduction

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this
object in terms of itself. This process is called recursion. For instance, the picture shown in
Figure 1 is produced recursively. First, an original picture is given. Then a process of successively
superimposing centered smaller pictures on top of the previous pictures is carried out.


