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Exercise 1

Show that this implication is a tautology, by using a table of truth: [(p∨q)∧(p→ r)∧(q → r)]→ r.

p q r p ∨ q p→ r q → r A:[(p ∨ q) ∧ (p→ r) ∧ (q → r)] A→ r

T T T T T T T T
T T F T F F F T
T F T T T T T T
T F F T F T F T
F T T T T T T T
F T F T T F F T
F F T F T T F T
F F F F T T F T

Exercise 2

Show that [(p ∨ q) ∧ (¬p ∨ r)→ (q ∨ r) is a tautology

p q r p ∨ q ¬p ∨ r A:(p ∨ q) ∧ (¬p ∨ r) q ∨ r A→ (q ∨ r)

T T T T T T T T
T T F T F F T T
T F T T T T T T
T F F T F F F T
F T T T T T T T
F T F T T T T T
F F T F T F T T
F F F F T F F T

Exercise 3

a) Let x be a real number. Show that “ if x2 is irrational, it follows that x is irrational.”
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Let p : x2 is irrational, and let q : x is irrational. We need to prove that p → q. We use an
indirect proof, i.e. we show that ¬q → ¬p.

Let us assume ¬q, i.e. x is rational. There exists an integer a and a non-zero integer b such
that x = a

b . Then x2 = a2

b2
. Since a2 and b2 are integers, x2 is a rational number. Therefore

¬p is true. Therefore ¬q → ¬p is true, and consequently p→ q is true.

b) Based on question a), can you say that “ if x is irrational, it follows that x2 is irrational.”

It is not a valid argument. The statement in a) can be simplified as “p→ q, while the second
statement is the converse of the first statement: they are not equivalent.

Exercise 4

Prove that a square of an integer ends with a 0, 1, 4, 5 6 or 9. (Hint: let n = 10k + l, where l = 0,
1, ,9)

Let n bean integer; there exists two integers k and l such that n = 10k + l where 0 ≤ l ≤ 9. We
get:

n2 = (10k + l)2

= 100k + 20kl + l2

= k × 100 + 2kl × 10 + l2

k × 100 and 2kl × 10 are multiples of 10. Therefore, n2 ends as l2. In the following table, we
show that l2 always end with a 0, 1, 4, 5, 6, or 9.

l l2 end

0 0 0
1 1 1
2 4 4
3 9 9
4 16 6
5 25 5
6 36 6
7 49 9
8 64 4
9 81 1

Exercise 5

Prove that if n is a positive integer, then n is even if and only if 5n + 6 is even.

Let p be the proposition “n is even” and q be the proposition “5n + 6 is even”. We want to
show that p↔ q, which is logically equivalent to show that p→ q and q → p.

i) Let us show p→ q:
Hypothesis: p is true, i.e. n is even. As n is even, there exists an integer k such that n = 2k.

We get:
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5n + 6 = 5(2k) + 6

= 10k + 6

= 2× (5k + 3)

Since 5k + 3 is an integer, 5n + 6 is a multiple of 2: it is even.
ii) Let us show q → p:
Hypothesis: q is true, i.e. 5n + 6 is even. As 5n + 6 is even, there exists an integer k such that

5n + 6 = 2k. We get:

5n = 2k − 6

n = 2k − 6− 4n

n = 2× (k − 3− 2n)

Since k − 3− 2n is an integer, n is a multiple of 2: it is even.
We conclude: n is even ↔ 5n + 6 is even.

Exercise 6

Prove that either 3× 100450 + 15 or 3× 100450 + 16 is not a perfect square.

Let n = 3× 100450 + 15. The two numbers are n and n + 1.
Proof by contradiction: Let us suppose that both n and n + 1 are perfect squares:

∃k ∈ Z, k2 = n

∃l ∈ Z, l2 = n + 1

Then

l2 = k2 + 1

(l − k)(l + k) = 1

Since l and k are integers, there are only two cases:

• l − k = 1 and l + k = 1, i.e. l = 1 and k = 0. Then we would have k2 = 0, i.e. n = 0:
contradiction

• l − k = −1 and l + k = −1, i.e. l = −1 and k = 0. Again, contradiction.

We can conclude that the proposition is true.

Exercise 7

Prove or disprove that if a and b are rational numbers, then ab is also rational.

It is not true. Let a = 2 and b = 1/2, both a and b are rational numbers. However, ab = 2
1
2 =
√

2
which is not rational (see lecture notes).
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Exercise 8

Prove that at least one of the real numbers a1, a2, . . . an is greater than or equal to the average of
these numbers. What kind of proof did you use?

We use a proof by contradiction.
Suppose none of the real numbers a1, a2, ..., an is greater than or equal to the average of these

numbers, denoted by a.
By definition

a =
a1 + a2 + ... + an

n

Our hypothesis is that:

a1 < a

a2 < a

... < ...

an < a

We sum up all these equations and get the following:

a1 + a2 + ... + an < n ∗ a

Replacing a in equation (9) by its value given in equation (4) we get:

a1 + a2 + ... + an < a1 + a2 + ... + an

This is not possible: a number cannot be strictly smaller than itself: we have reached a contra-
dition. Therefore our hypothesis was wrong, and the original statement was correct.

Exercise 9

The correct order is: 3, 5, 4, 2, 1.

Exercise 10

Prove that these four statements are equivalent: (i) n2 is odd, (ii) 1−n is even, (iii) n3 is odd, (iv)
n2 + 1 is even.

Let us define the four propositions:

• p : n2 is odd

• q : 1− n is even

• r : n3 is odd

• s : n2 + 1 is even
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we will show:

• q ↔ p

• q ↔ r

• q ↔ s

If these three logical equivalence are true, all four propositions are equivalent.

1) Proof 1: 1− n is even ↔ n2 is odd.

We need to show two implications: (1) 1 − n is even implies n2 is odd and (2), n2 is odd
implies that 1− n is even.

a) Implication 1: q → p

We use a direct proof.

Hypothesis: q is true, i.e. 1− n is even. There exists an integer k such that 1− n = 2k.
Therefore n = 1− 2k. Taking the squares on each side, we get:

n2 = (1− 2k)2 = 4k2 − 2k + 1 = 2(2k2 − k) + 1

Therefore n2 is odd. We conclude that q → p.

b) Implication 2: p→ q.

We use an indirect proof, i.e. we show that: ¬q → ¬p.

∗ ¬q: 1− n is odd

∗ ¬p: n2 is even.

Let us suppose that 1 − n is odd. There exists an integer k such that 1 − n = 2k + 1;
therefore n = −2k. Taking the square, we find that n2 = 4k2, and therefore n2 is even.

We conclude that ¬q → ¬p; its contrapositive is then also true, i.e. p→ q.

We conclude that q → p and p→ q, and therefore p⇔ q.

2) Proof 2: 1− n is even ↔ n3 is odd.

We need to show two implications: (1) 1 − n is even implies n2 is odd and (2), n2 is odd
implies that 1− n is even.

a) Implication 1: q → r

We use a direct proof.

Hypothesis: q is true, i.e. 1− n is even. There exists an integer k such that 1− n = 2k.
Therefore n = 1− 2k. Taking the cubes on each side, we get:

n3 = (1− 2k)3 = −8k3 + 12k2 − 6k + 1 = 2(−4k3 + 6k2 − 3k) + 1

Therefore n3 is odd. We conclude that q → r.

b) Implication 2: r → q.

We use an indirect proof, i.e. we show that: ¬q → ¬r.

∗ ¬q: 1− n is odd

∗ ¬p: n3 is even.
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Let us suppose that 1 − n is odd. There exists an integer k such that 1 − n = 2k + 1;
therefore n = −2k. Taking the cube, we find that n3 = 8k3 = 2(4k3), and therefore n3

is even.

We conclude that ¬q → ¬r; its contrapositive is then also true, i.e. r → q.

We conclude that q → r and r → q, and therefore r ⇔ q.

1) Proof 3: 1− n is even ↔ n2 + 1 is even.

We need to show two implications: (1) 1− n is even implies n2 + 1 is even and (2), n2 + 1 is
even implies that 1− n is even.

This is nearly a copy of proof 1!!

a) Implication 1: q → s

We use a direct proof.

Hypothesis: q is true, i.e. 1− n is even. There exists an integer k such that 1− n = 2k.
Therefore n = 1− 2k. Taking the squares on each side, we get:

n2 = (1− 2k)2 = 4k2 − 2k + 1 = 2(2k2 − k) + 1

Therefore:

n2 + 1 = 2(2k2 − k) + 1 + 1 = 2 ∗ (2k2 − k + 1)

Therefore n2 + 1 is even. We conclude that q → s.

b) Implication 2: s→ q.

We use an indirect proof, i.e. we show that: ¬q → ¬s.
∗ ¬q: 1− n is odd

∗ ¬s: n2 + 1 is odd.

Let us suppose that 1 − n is odd. There exists an integer k such that 1 − n = 2k + 1;
therefore n = −2k. Taking the square, we find that n2 = 4k2, and therefore n2 + 1 =
4k2 + 1, i.e. n2 + 1 is odd.

We conclude that ¬q → ¬s; its contrapositive is then also true, i.e. s→ q.

We conclude that q → s and p→ s, and therefore s⇔ q.

Extra Credit

Use Exercise 8 to show that if the first 10 strictly positive integers are placed around a circle, in
any order, then there exist three integers in consecutive locations around the circle that have a sum
greater than or equal to 17.

Let a1, a2, ..., a10 be an arbitrary order of 10 positive integers from 1 to 10 being placed around
a circle:

Since the ten numbers a correspond to the first 10 positive integers, we get:

a1 + a2 + ... + a10 = 1 + 2 + ... + 10 = 55 (1)
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a
1

a
2

a
3

a
4

a
5a

6

a
7

a
8

a
9

a
10

Notice that the a1, a2, ..., a10 are not necessarily in the order 1, 2, ..., 10. They do include
however the ten integers from 1 to 10: these is why the sum is 55

Let us now consider the different sums Si of three consecutive sites around the circle. There
are 10 such sums:

S1 = a1 + a2 + a3

S2 = a2 + a3 + a4

S3 = a3 + a4 + a5

S4 = a4 + a5 + a6

S5 = a5 + a6 + a7

S6 = a6 + a7 + a8

S7 = a7 + a8 + a9

S8 = a8 + a9 + a10

S9 = a9 + a10 + a1

S10 = a10 + a1 + a2

We do not know the values of the individual sums Si; however, we can compute the sum of
these numbers:

S1 + S2 + ... + S10 = (a1 + a2 + a3) + (a2 + a3 + a4) + ... + (a10 + a1 + a2)

= 3 ∗ (a1 + a2 + ... + a10)

= 3 ∗ 55

= 165

The average of S1, S2, ..., S10 is therefore:
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S =
S1 + S2 + ... + S10

10

=
165

10
= 16.5

Based on the conclusion of Exercise 8, at least one of S1, S2, ..., S10 is greater to or equal to S,
i.e., 16.5. Because S1, S2, ..., S10 are all integers, they cannot be equal to 16.5. Thus, at least one
of S1, S2, ..., S10 is greater to or equal to 17.
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