Homework 3: Solutions

ECS 20 (Fall 2016)

Patrice Koehl koehl@cs.ucdavis.edu

September 30, 2016

Exercise 1

Show that this implication is a tautology, by using a table of truth: $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$.

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$A:[(p \lor q) \land (p \to r) \land (q \to r)]$	$A \to r$
T	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	\mathbf{F}	Т
T	F	Т	Т	Т	Т	Т	Т
T	F	F	Т	F	Т	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	\mathbf{F}	Т
F	F	Т	F	T	Т	F	Т
F	F	F	F	T	Т	F	Т

Exercise 2

Show that $[(p \vee q) \land (\neg p \vee r) \to (q \vee r)$ is a tautology

p	q	r	$p \lor q$	$\neg p \lor r$	$A{:}(p \lor q) \land (\neg p \lor r)$	$q \lor r$	$A \to (q \lor r)$
Т	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	Т	Т
Т	F	Т	Т	Т	Т	Т	Т
T	F	F	Т	F	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т	Т
F	F	Т	F	Т	F	Т	Т
F	F	F	F	Т	F	F	Т

Exercise 3

a) Let x be a real number. Show that " if x^2 is irrational, it follows that x is irrational."

Let $p: x^2$ is irrational, and let q: x is irrational. We need to prove that $p \to q$. We use an indirect proof, i.e. we show that $\neg q \to \neg p$.

Let us assume $\neg q$, i.e. x is rational. There exists an integer a and a non-zero integer b such that $x = \frac{a}{b}$. Then $x^2 = \frac{a^2}{b^2}$. Since a^2 and b^2 are integers, x^2 is a rational number. Therefore $\neg p$ is true. Therefore $\neg q \rightarrow \neg p$ is true, and consequently $p \rightarrow q$ is true.

b) Based on question a), can you say that " if x is irrational, it follows that x^2 is irrational."

It is not a valid argument. The statement in a) can be simplified as " $p \rightarrow q$, while the second statement is the converse of the first statement: they are not equivalent.

Exercise 4

Prove that a square of an integer ends with a 0, 1, 4, 5 6 or 9. (Hint: let n = 10k + l, where l = 0, 1, 9)

Let n bean integer; there exists two integers k and l such that n = 10k + l where $0 \le l \le 9$. We get:

$$n^{2} = (10k + l)^{2}$$

= 100k + 20kl + l^{2}
= k × 100 + 2kl × 10 + l^{2}

 $k \times 100$ and $2kl \times 10$ are multiples of 10. Therefore, n^2 ends as l^2 . In the following table, we show that l^2 always end with a 0, 1, 4, 5, 6, or 9.

1	l^2	end
0	0	0
1	1	1
2	4	4
3	9	9
4	16	6
5	25	5
6	36	6
7	49	9
8	64	4
9	81	1

Exercise 5

Prove that if n is a positive integer, then n is even if and only if 5n + 6 is even.

Let p be the proposition "n is even" and q be the proposition "5n + 6 is even". We want to show that $p \leftrightarrow q$, which is logically equivalent to show that $p \rightarrow q$ and $q \rightarrow p$.

i) Let us show $p \to q$:

Hypothesis: p is true, i.e. n is even. As n is even, there exists an integer k such that n = 2k. We get:

$$5n + 6 = 5(2k) + 6$$

= 10k + 6
= 2 × (5k + 3)

Since 5k + 3 is an integer, 5n + 6 is a multiple of 2: it is even. ii) Let us show $q \to p$:

Hypothesis: q is true, i.e. 5n + 6 is even. As 5n + 6 is even, there exists an integer k such that 5n + 6 = 2k. We get:

$$5n = 2k - 6$$

$$n = 2k - 6 - 4n$$

$$n = 2 \times (k - 3 - 2n)$$

Since k - 3 - 2n is an integer, n is a multiple of 2: it is even. We conclude: n is even $\leftrightarrow 5n + 6$ is even.

Exercise 6

Prove that either $3 \times 100^{450} + 15$ or $3 \times 100^{450} + 16$ is not a perfect square.

Let $n = 3 \times 100^{450} + 15$. The two numbers are n and n + 1. Proof by contradiction: Let us suppose that both n and n + 1 are perfect squares:

$$\exists k \in \mathbb{Z}, k^2 = n$$

$$\exists l \in \mathbb{Z}, l^2 = n + 1$$

Then

$$l^2 = k^2 + 1$$

 $(l-k)(l+k) = 1$

Since l and k are integers, there are only two cases:

- l k = 1 and l + k = 1, i.e. l = 1 and k = 0. Then we would have $k^2 = 0$, i.e. n = 0: contradiction
- l k = -1 and l + k = -1, i.e. l = -1 and k = 0. Again, contradiction.

We can conclude that the proposition is true.

Exercise 7

Prove or disprove that if a and b are rational numbers, then a^b is also rational.

It is not true. Let a = 2 and b = 1/2, both a and b are rational numbers. However, $a^b = 2^{\frac{1}{2}} = \sqrt{2}$ which is not rational (see lecture notes).

Exercise 8

Prove that at least one of the real numbers $a_1, a_2, \ldots a_n$ is greater than or equal to the average of these numbers. What kind of proof did you use?

We use a proof by contradiction.

Suppose none of the real numbers $a_1, a_2, ..., a_n$ is greater than or equal to the average of these numbers, denoted by \overline{a} .

By definition

$$\overline{a} = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Our hypothesis is that:

$$a_1 < \overline{a}$$

 $a_2 < \overline{a}$
 $\dots < \dots$
 $a_n < \overline{a}$

We sum up all these equations and get the following:

$$a_1 + a_2 + \ldots + a_n < n * \overline{a}$$

Replacing \overline{a} in equation (9) by its value given in equation (4) we get:

$$a_1 + a_2 + \dots + a_n < a_1 + a_2 + \dots + a_n$$

This is not possible: a number cannot be strictly smaller than itself: we have reached a contradition. Therefore our hypothesis was wrong, and the original statement was correct.

Exercise 9

The correct order is: 3, 5, 4, 2, 1.

Exercise 10

Prove that these four statements are equivalent: (i) n^2 is odd, (ii) 1 - n is even, (iii) n^3 is odd, (iv) $n^2 + 1$ is even.

Let us define the four propositions:

- $p: n^2$ is odd
- q: 1-n is even
- r : n^3 is odd
- $s: n^2 + 1$ is even

we will show:

- $q \leftrightarrow p$
- $\bullet \ q \leftrightarrow r$
- $q \leftrightarrow s$

If these three logical equivalence are true, all four propositions are equivalent.

1) **Proof 1**: 1 - n is even $\leftrightarrow n^2$ is odd.

We need to show two implications: (1) 1 - n is even implies n^2 is odd and (2), n^2 is odd implies that 1 - n is even.

a) Implication 1: $q \to p$

We use a direct proof.

Hypothesis: q is true, i.e. 1 - n is even. There exists an integer k such that 1 - n = 2k. Therefore n = 1 - 2k. Taking the squares on each side, we get:

$$n^{2} = (1 - 2k)^{2} = 4k^{2} - 2k + 1 = 2(2k^{2} - k) + 1$$

Therefore n^2 is odd. We conclude that $q \to p$.

b) Implication 2: $p \rightarrow q$.

We use an indirect proof, i.e. we show that: $\neg q \rightarrow \neg p$.

- * $\neg q$: 1 n is odd
- * $\neg p$: n^2 is even.

Let us suppose that 1 - n is odd. There exists an integer k such that 1 - n = 2k + 1; therefore n = -2k. Taking the square, we find that $n^2 = 4k^2$, and therefore n^2 is even. We conclude that $\neg q \rightarrow \neg p$; its contrapositive is then also true, i.e. $p \rightarrow q$.

We conclude that $q \to p$ and $p \to q$, and therefore $p \Leftrightarrow q$.

2) **Proof 2**: 1 - n is even $\leftrightarrow n^3$ is odd.

We need to show two implications: (1) 1 - n is even implies n^2 is odd and (2), n^2 is odd implies that 1 - n is even.

a) Implication 1: $q \to r$

We use a direct proof.

Hypothesis: q is true, i.e. 1 - n is even. There exists an integer k such that 1 - n = 2k. Therefore n = 1 - 2k. Taking the cubes on each side, we get:

$$n^{3} = (1 - 2k)^{3} = -8k^{3} + 12k^{2} - 6k + 1 = 2(-4k^{3} + 6k^{2} - 3k) + 1$$

Therefore n^3 is odd. We conclude that $q \to r$.

b) Implication 2: $r \to q$.

We use an indirect proof, i.e. we show that: $\neg q \rightarrow \neg r$.

- * $\neg q$: 1 n is odd
- * $\neg p$: n^3 is even.

Let us suppose that 1 - n is odd. There exists an integer k such that 1 - n = 2k + 1; therefore n = -2k. Taking the cube, we find that $n^3 = 8k^3 = 2(4k^3)$, and therefore n^3 is even.

We conclude that $\neg q \rightarrow \neg r$; its contrapositive is then also true, i.e. $r \rightarrow q$.

We conclude that $q \to r$ and $r \to q$, and therefore $r \Leftrightarrow q$.

1) **Proof 3**: 1 - n is even $\leftrightarrow n^2 + 1$ is even.

We need to show two implications: (1) 1 - n is even implies $n^2 + 1$ is even and (2), $n^2 + 1$ is even implies that 1 - n is even.

This is nearly a copy of proof 1!!

a) Implication 1: $q \rightarrow s$

We use a direct proof.

Hypothesis: q is true, i.e. 1 - n is even. There exists an integer k such that 1 - n = 2k. Therefore n = 1 - 2k. Taking the squares on each side, we get:

$$n^{2} = (1 - 2k)^{2} = 4k^{2} - 2k + 1 = 2(2k^{2} - k) + 1$$

Therefore:

$$n^{2} + 1 = 2(2k^{2} - k) + 1 + 1 = 2 * (2k^{2} - k + 1)$$

Therefore $n^2 + 1$ is even. We conclude that $q \to s$.

b) Implication 2: $s \to q$.

We use an indirect proof, i.e. we show that: $\neg q \rightarrow \neg s$.

- * $\neg q$: 1 n is odd
- * $\neg s: n^2 + 1$ is odd.

Let us suppose that 1 - n is odd. There exists an integer k such that 1 - n = 2k + 1; therefore n = -2k. Taking the square, we find that $n^2 = 4k^2$, and therefore $n^2 + 1 = 4k^2 + 1$, i.e. $n^2 + 1$ is odd.

We conclude that $\neg q \rightarrow \neg s$; its contrapositive is then also true, i.e. $s \rightarrow q$.

We conclude that $q \to s$ and $p \to s$, and therefore $s \Leftrightarrow q$.

Extra Credit

Use Exercise 8 to show that if the first 10 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum greater than or equal to 17.

Let $a_1, a_2, ..., a_{10}$ be an arbitrary order of 10 positive integers from 1 to 10 being placed around a circle:

Since the ten numbers a correspond to the first 10 positive integers, we get:

$$a_1 + a_2 + \dots + a_{10} = 1 + 2 + \dots + 10 = 55$$
 (1)

Notice that the $a_1, a_2, ..., a_{10}$ are not necessarily in the order 1, 2, ..., 10. They do include however the ten integers from 1 to 10: these is why the sum is 55

Let us now consider the different sums S_i of three consecutive sites around the circle. There are 10 such sums:

$$S_{1} = a_{1} + a_{2} + a_{3}$$

$$S_{2} = a_{2} + a_{3} + a_{4}$$

$$S_{3} = a_{3} + a_{4} + a_{5}$$

$$S_{4} = a_{4} + a_{5} + a_{6}$$

$$S_{5} = a_{5} + a_{6} + a_{7}$$

$$S_{6} = a_{6} + a_{7} + a_{8}$$

$$S_{7} = a_{7} + a_{8} + a_{9}$$

$$S_{8} = a_{8} + a_{9} + a_{10}$$

$$S_{9} = a_{9} + a_{10} + a_{1}$$

$$S_{10} = a_{10} + a_{1} + a_{2}$$

We do not know the values of the individual sums S_i ; however, we can compute the sum of these numbers:

$$S_1 + S_2 + \dots + S_{10} = (a_1 + a_2 + a_3) + (a_2 + a_3 + a_4) + \dots + (a_{10} + a_1 + a_2)$$

= 3 * (a_1 + a_2 + \dots + a_{10})
= 3 * 55
= 165

The average of $S_1, S_2, ..., S_{10}$ is therefore:

$$\overline{S} = \frac{S_1 + S_2 + \dots + S_{10}}{10} \\ = \frac{165}{10} \\ = 16.5$$

Based on the conclusion of Exercise 8, at least one of $S_1, S_2, ..., S_{10}$ is greater to or equal to \overline{S} , i.e., 16.5. Because $S_1, S_2, ..., S_{10}$ are all integers, they cannot be equal to 16.5. Thus, at least one of $S_1, S_2, ..., S_{10}$ is greater to or equal to 17.