ECS₂₀ Homework 5

Exercise 1

Find these values:

- a) [2.4] b) [2.4] c) [-3.4]d) [-3.4] e) [6.99] f) [-6.99]
- g) $\left| \frac{1}{4} + \left[\frac{1}{4} \right] \right|$ h) $\left[\left| \frac{1}{4} \right| + \left[\frac{1}{4} \right] + \frac{1}{2} \right]$

Exercise 2 (proof)

- a) Show that the following statement is true:
 - "If x is a real number such that $x^2+2=0$, then $x^4=-5$ ".
- b) Constructive proof:

"If x and y are real numbers such that x < y, show that there exists a real number z with x < z < y"

Exercise 3

Let x be a real number. Show that $\lfloor 3x \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{3} \right\rfloor + \left\lfloor x + \frac{2}{3} \right\rfloor$

Exercise 4

Show that for all strictly positive integer *n* and for all real number x, $\left|\frac{\lfloor nx \rfloor}{n}\right| = \lfloor x \rfloor$

**Extra credit:

Let us consider a generalization of exercise 3. Let x be a real number, and N an integer greater or equal to 3. Show that:

$$\lfloor Nx \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{N} \rfloor + \lfloor x + \frac{2}{N} \rfloor + \dots + \lfloor x + \frac{N-1}{N} \rfloor$$