ECS20 Homework 6

Exercise 1

Prove or disprove each of these statements about the floor and ceiling functions.

- a) $\left[\lfloor x \rfloor \right] = \lfloor x \rfloor$ for all real numbers x.
- b) |xy| = |x|| |y| for all real numbers x and y.
- c) $\left|\sqrt{\left[x\right]}\right| = \left|\sqrt{x}\right|$ for all positive real numbers *x*.

Exercise 2

Show that x^3 is $O(x^4)$ but that x^4 is not $O(x^3)$.

Exercise 3

- a) Show that 2x-9 is $\Theta(x)$.
- b) Show that $3x^2 + x 5$ is $\Theta(x^2)$
- c) Show that $\left[x + \frac{2}{3}\right]$ is $\Theta(x)$
- d) Show that $log_{10}(x)$ is $\Theta(log_2(x))$

Exercise 4

Let *a* and *b* be two integers. Use a proof by contradiction to show that if a^2-b^2+2ab is odd then *a-b* is odd.

Exercise 5

Use a proof by contradiction to show that:

There exists a strictly positive real number *r* such that for all real number *x*, if $x - \lfloor x \rfloor < r$ then $\lfloor 3x \rfloor = 3x$.

Extra credit:

We call a positive integer perfect if it equals the sum of its positive divisors other than itself.

- a) Show that 6 and 28 are perfect
- b) Show that $2^{p-1}(2^p-1)$ is a perfect number when 2^p-1 is prime.