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Exercise 1

Let p be the proposition: ”"n is even”, and ¢ be the proposition "n + 4 is even”.

e Direct proof: We show directly p — g.
Hypothesis: p is true, i.e. n is even.

If n is even, there exists an integer k such that n = 2xk, Then, n+4 =2xk+4 = 2% (k+2).
Therefore, n + 4 is even, i.e. ¢ is true. We conclude that p — q.

e Indirect proof: We show that —=q¢ — —p.
Hypothesis: —q is true, i.e. n+4 is odd. Then there exists an integer k such that n+4 = 2xk+1,
where k is an integer. Then n =2k —3 =2x% (k —2) 4+ 1, i.e. nis odd. —p is true.
We have shown that —q — —p; by contrapositive, we conclude p — q.

e Contradiction:
Hypothesis: We suppose that the proposition p — ¢ is false, i.e. that p is true and g is false.
If n is even, there exists an integer k such that n = 2%k, Then, n+4 =2xk+4 =2x(k+2).

Therefore, n + 4 is even; but the hypothesis states n + 4 is odd: we reach a contradiction.
The hypothesis is wrong, therefore the statement p — ¢ is true.

Exercise 2
There are at least two methods to show that (A — B) — C = (A—C) — (B — C). I will use both a
”direct” proof based on set theory identity and a proof based on logic, using a membership table.

e Method 1: set identity
(A-C)—(B-0) =

(e AN-zeC)AN=(xe BNz € () Definition
(xeAN-xeC)N(~x e BVvrzel) De Morgan’s law
(reAN-zeC)N-xzeB)V((xe AN—xze(C)ANxeC)) Distributivity
(xeAN-zeC)N-zeB)V(xe AN(—z e CAxeC)) Associativity
(reAN-2zeC)N-xzeB)V(xe ANF) Complement law
(e AN—zeC)N-x€B)VF Absorption law
(reAN-2zeC)N—x€B Absorption law
(m EAN-x€E€B)AN-x€C Associativity
(A-B)-C Definition



e Method 2: Membership table

A B C A-B A-C B-C (A-B)-C (A-C)—(B-0C)
1 1 1 0 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1
01 1 0 0 0 0 0
01 0 0 0 1 0 0
00 1 0 0 0 0 0
00 0 0 0 0 0 0

Since column 7 and 8 are equal, the two sets are equal

Exercise 3

Again, there are at least two methods to show that A® B = (A— B) — (B — A). I will use both a
”direct” proof based on set theory identity and a proof based on logic, using a membership table.

e Method 1: set identity
(A-—B)U(B—-A) =

(re AN—ze€B)V(xre BNz €A Definition

(e AN—zeB)VeeB)AN((zr€ AN—x € B)V-z €A Distributivity
(xe Avee B)AN(rx € BVz e B))AN((x € AN—z € B)V -~z € A) Distributivity
(xeAvze BINT)AN((r € AN—z € B)V -z cA) Complement law
(xreAvee B)AN((re AN—-x € B)V-xecA) Absorption law
(xe AVze B)AN((r € AV-x € A)AN(—z € BV —x € A)) Distributivity
(xe Avee BIN(T AN(—x€ BV -z € A)) Complement law
(reAVz e B)AN(—x € BV —x € A) Absorption law
(xe AVvee B)A(-(x € ANz € B)) De Morgan’s law
A® B Definition

e Method 2: Membership table

A B A-B B-A (A-B)U(B—A) A®B

S O = =
O = O =
o O RO
o~ OO
O = = O
O = = O

Since column 5 and 6 are equal, the two sets are equal.



Exercise 4

All three problems can be solved using a membership table. Here I describe either alternative
solution, using the definition of sets and their properties, or the solution based on the membership
table (except for case a where I use both).

e a)
— Direct proof
From exercise 3, we know that:
A®B=(A-B)U(B-A)
Applying this result by inverting A and B, we get:
B®A=(B-—A)UA-B)=(A-B)U(B-A4)
since U is symmetric. Therefore A ® B = B @ A.
— Membership table:
A B A®B BagA
1 1 0 0
1 0 1 1
0 1 1 1
0 O 0 0
e b)

I only use the membership table:

A B A®B (A®B)®B

OO = =
O = O =
O = = O
S O = =

e ()
From exercise 3, we know that A® B = (A — B) U (B — A). Applying this result to B = A,
weget ADA=0UQ =0.

We need to show that: if A # @ then A& A # A. This is an implication of the form p — ¢
with



p:AF#Q
and
qg:ADA#A

We show that the implication is true using a proof by contrapositive. Let us assume that —q
is true, i.e. that A ® A = A. As mentioned above, A ® A = @. Therefore A = ©». We have
shown —p is true. Therefore —q — —p is true, and p — ¢ is true.
Exercise 5
a: Let A={1,2,3}, B={1,4}, C ={3,4}. Then AUB=BUC ={1,2,3,4} and A # B.
b. Let A=1{1,2,3}, B=1{2,4}, C ={2,5}. Then ANB=BNC = {2} and A # B.
Exercise 6
From the inclusion-exclusion principle, we know that:
|AUB| = |A| + |B| - |[AN B|
Let us consider the three sets A, B and C. We observe that:
|JAUBUC|=|(AUB)UC|
Then:

|JAUBUC| = |AUB|+|C|—|(AUuB)NC|
= |Al+|B|+|C|—-]|ANB|-[(AUB)NC|
= |Al+|B|+|C|—-]ANB|—-[(ANnC)U(BNQC)|
= |Al+|B|+|C|-]ANB|—(JANC|+|BNC|—|(AnC)Nn(BNC)|)
= |Al+|B|+|C|-]ANB|—|ANC|—|BNC|+|(AnC)N(BNC)|
= |A|+|B|+|C|—|ANB|—|ANC|—-|BNnC|+|ANnBnNC|

Exercise 7
We want to show that
[AnB| = |U|—|Al—-|B|+|ANB|

Let us define C = AU B.
A complement law tells us that C U C = U where U is the domain. Also, C N C = @. Using the
inclusion-exclusion principle (see exercise 6), we find:

Ul =1Cl+]C|

We know that |C| = |AU B| = |A| + |B| — |AN B|, and, based on DeMorgan’s law, C = AN B.
Replacing in the equation above, after rearrangement, we obtain:

|ANB| = |U|-|A|-|B|+|ANB|



Exercise 8

a J, Ai={.,-2-10,1,...n} = 4,
b: ﬂ;’-lzl Az = 1 —2, —1,0, 1} = A1

Exercise 9

We want to show that if A|JB = B, then A(1B = A.

This is a proof of an implication. We use a direct proof.

Let A and B be two sets in a domain D. To show that A(\B = A, we show that A(YB C A
and AC AN B

a) A B C A.
Let « be an element of A B. Then x € A and = € b, and a fortiori z € A.
b) Ac ANB

Let x be an element of A. Since A C AUB, x € A|UB. The premise is that A|JB = B.
Therefore € B. Since z is in A and in B, z € A( B.

This concludes the proof.

Exercise 10

We want to show that if A(|B = A, then B[) (B ﬂZ) = A.
This is a proof of an implication. We use a direct proof.
We simplify B (B N fl):

BN <B ﬂZ) = B <§ Uj> De Morgan’s law
= BN (BUA) Complementation law
= (BOB)UBNA) Distributivity law
= 0(UBNA) Complement set 1
= BNA Absorption law 1

Therefore, B (B ﬂZ) = B[ A = A B. According to the premise, A(B = A. Therefore
BN <B ﬂZ) = A. This concludes the proof.

Extra Credit

a) Let A and B be two sets. We want to show that P(A)(P(B) = P(A() B).

Let us define LHS = P(A)(P(B) and RHS = P(A() B). We want to show LHS = RHS.
We will show that LHS C RHS and RHS C LHS.

i) Let S € LHS. By definition of LHS, S € P(A) and S € P(A). Since S € P(A), S C A.
Similarly, since S € P(B), S C B. Therefore S is a subset of A(") B, which is equivalent
to saying that S € P(A() B).



ii) Let S € RHS. By definition of RHS, S € P(A(B), therefore S C A B. By
definition of A() B, we have that S C A and S C B, ie. S € P(A) and S € P(B), i.e.
S e P(A)P(B).
We conclude that P(A)P(B) = P(AB).
We want to show that there exists two sets A and B such that P(A) | JP(B) # P(AU B).
Let A = {a,b} and B = {c,d}. then:
P(A) = {0,{a}, {0}, {a,0}}

and
P(B) = {[Z)’ {c}’ {d}v {C’ d}}
Therefore,

P(A)UP(B) ={0,{a},{b},{c}, {d} {a,b},{c,d}}

As A|JB = {a,b,c,d} we have,

P(AUP(B) = {0, {a}, {b},{c} . {d} . {a.b},{a,c}{a,d}, {b,c},{b,d},{c,d}, {a,b,c}, {a, b, d}, {a, c,d},
{b,c,d},{a,b,c,d}}

Therefore P(A) | UP(B) # P(A B).



