Homework 4 Solutions

ECS 20 (Fall 2016)

Patrice Koehl koehl@cs.ucdavis.edu

October 15, 2016

Exercise 1

Let p be the proposition: "n is even", and q be the proposition "n + 4 is even".

• **Direct proof**: We show directly $p \rightarrow q$. Hypothesis: p is true, i.e. n is even.

If n is even, there exists an integer k such that n = 2 * k, Then, n + 4 = 2 * k + 4 = 2 * (k + 2). Therefore, n + 4 is even, i.e. q is true. We conclude that $p \to q$.

• Indirect proof: We show that $\neg q \rightarrow \neg p$.

Hypothesis: $\neg q$ is true, i.e. n+4 is odd. Then there exists an integer k such that n+4=2*k+1, where k is an integer. Then n = 2 * k - 3 = 2 * (k - 2) + 1, i.e. n is odd. $\neg p$ is true.

We have shown that $\neg q \rightarrow \neg p$; by contrapositive, we conclude $p \rightarrow q$.

• Contradiction:

Hypothesis: We suppose that the proposition $p \to q$ is false, i.e. that p is true and q is false. If n is even, there exists an integer k such that n = 2 * k, Then, n + 4 = 2 * k + 4 = 2 * (k + 2). Therefore, n + 4 is even; but the hypothesis states n + 4 is odd: we reach a contradiction. The hypothesis is wrong, therefore the statement $p \rightarrow q$ is true.

Exercise 2

There are at least two methods to show that (A - B) - C = (A - C) - (B - C). I will use both a "direct" proof based on set theory identity and a proof based on logic, using a membership table.

• Method 1: set identity

(A-C) - (B-C) = $(x \in A \land \neg x \in C) \land \neg (x \in B \land \neg x \in C)$ Definition $(x \in A \land \neg x \in C) \land (\neg x \in B \lor x \in C)$ $((x \in A \land \neg x \in C) \land \neg x \in B) \lor ((x \in A \land \neg x \in C) \land x \in C))$ $((x \in A \land \neg x \in C) \land \neg x \in B) \lor (x \in A \land (\neg x \in C \land x \in C))$ $((x \in A \land \neg x \in C) \land \neg x \in B) \lor (x \in A \land F)$ $((x \in A \land \neg x \in C) \land \neg x \in B) \lor F$ $(x \in A \land \neg x \in C) \land \neg x \in B$ $(x \in A \land \neg x \in B) \land \neg x \in C$ (A-B)-C

De Morgan's law Distributivity Associativity Complement law Absorption law Absorption law Associativity Definition

A	В	С	A - B	A - C	B-C	(A-B)-C	(A-C) - (B-C)
1	1	1	0	0	0	0	0
1	1	0	0	1	1	0	0
1	0	1	1	0	0	0	0
1	0	0	1	1	0	1	1
0	1	1	0	0	0	0	0
0	1	0	0	0	1	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Since column 7 and 8 are equal, the two sets are equal

Exercise 3

Again, there are at least two methods to show that $A \oplus B = (A - B) - (B - A)$. I will use both a "direct" proof based on set theory identity and a proof based on logic, using a membership table.

• Method 1: set identity

 $(A - B) \cup (B - A) =$ $(x \in A \land \neg x \in B) \lor (x \in B \land \neg x \in A)$ Definition $((x \in A \land \neg x \in B) \lor x \in B) \land ((x \in A \land \neg x \in B) \lor \neg x \in A)$ Distributivity $((x \in A \lor x \in B) \land (\neg x \in B \lor x \in B)) \land ((x \in A \land \neg x \in B) \lor \neg x \in A)$ Distributivity $((x \in A \lor x \in B) \land T) \land ((x \in A \land \neg x \in B) \lor \neg x \in A)$ Complement law $(x \in A \lor x \in B) \land ((x \in A \land \neg x \in B) \lor \neg x \in A)$ Absorption law $(x \in A \lor x \in B) \land ((x \in A \lor \neg x \in A) \land (\neg x \in B \lor \neg x \in A))$ Distributivity $(x \in A \lor x \in B) \land (T \land (\neg x \in B \lor \neg x \in A))$ Complement law $(x \in A \lor x \in B) \land (\neg x \in B \lor \neg x \in A)$ Absorption law $(x \in A \lor x \in B) \land (\neg (x \in A \land x \in B))$ De Morgan's law $A \oplus B$ Definition

• Method 2: Membership table

A	B	A - B	B - A	$(A-B) \cup (B-A)$	$A\oplus B$
1	1	0	0	0	0
1	0	1	0	1	1
0	1	0	1	1	1
0	0	0	0	0	0

Since column 5 and 6 are equal, the two sets are equal.

Exercise 4

All three problems can be solved using a membership table. Here I describe either alternative solution, using the definition of sets and their properties, or the solution based on the membership table (except for case a where I use both).

• a)

- Direct proof

From exercise 3, we know that:

$$A \oplus B = (A - B) \cup (B - A)$$

Applying this result by inverting A and B, we get:

$$B \oplus A = (B - A) \cup (A - B) = (A - B) \cup (B - A)$$

since \cup is symmetric. Therefore $A \oplus B = B \oplus A$.

– Membership table:

A	B	$A\oplus B$	$B\oplus A$
1	1	0	0
1	0	1	1
0	1	1	1
0	0	0	0

• b)

I only use the membership table:

A	B	$A \oplus B$	$(A\oplus B)\oplus B$
1	1	0	1
1	0	1	1
0	1	1	0
0	0	0	0

• c)

From exercise 3, we know that $A \oplus B = (A - B) \cup (B - A)$. Applying this result to B = A, we get $A \oplus A = \oslash \cup \oslash = \oslash$.

We need to show that: if $A \neq \emptyset$ then $A \oplus A \neq A$. This is an implication of the form $p \rightarrow q$ with

 $p: A \neq \oslash$ and

 $q:A\oplus A\neq A$

We show that the implication is true using a proof by contrapositive. Let us assume that $\neg q$ is true, i.e. that $A \oplus A = A$. As mentioned above, $A \oplus A = \emptyset$. Therefore $A = \emptyset$. We have shown $\neg p$ is true. Therefore $\neg q \to \neg p$ is true, and $p \to q$ is true.

Exercise 5

a: Let $A = \{1, 2, 3\}, B = \{1, 4\}, C = \{3, 4\}$. Then $A \cup B = B \cup C = \{1, 2, 3, 4\}$ and $A \neq B$. **b**. Let $A = \{1, 2, 3\}, B = \{2, 4\}, C = \{2, 5\}$. Then $A \cap B = B \cap C = \{2\}$ and $A \neq B$.

Exercise 6

From the inclusion-exclusion principle, we know that:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Let us consider the three sets A, B and C. We observe that:

$$|A \cup B \cup C| = |(A \cup B) \cup C|$$

Then:

$$\begin{aligned} |A \cup B \cup C| &= |A \cup B| + |C| - |(A \cup B) \cap C| \\ &= |A| + |B| + |C| - |A \cap B| - |(A \cup B) \cap C| \\ &= |A| + |B| + |C| - |A \cap B| - |(A \cap C) \cup (B \cap C)| \\ &= |A| + |B| + |C| - |A \cap B| - (|A \cap C| + |B \cap C| - |(A \cap C) \cap (B \cap C)|) \\ &= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |(A \cap C) \cap (B \cap C)| \\ &= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \end{aligned}$$

Exercise 7

We want to show that

$$\bar{A} \cap \bar{B}| = |U| - |A| - |B| + |A \cap B|$$

Let us define $C = A \cup B$.

A complement law tells us that $C \cup \overline{C} = U$ where U is the domain. Also, $C \cap \overline{C} = \emptyset$. Using the inclusion-exclusion principle (see exercise 6), we find:

$$U| = |C| + |C|$$

We know that $|C| = |A \cup B| = |A| + |B| - |A \cap B|$, and, based on DeMorgan's law, $\overline{C} = \overline{A} \cap \overline{B}$. Replacing in the equation above, after rearrangement, we obtain:

$$|\bar{A} \cap \bar{B}| = |U| - |A| - |B| + |A \cap B|$$

Exercise 8

a: $\bigcup_{i=1}^{n} A_i = \{..., -2, -1, 0, 1, ..., n\} = A_n$ **b**: $\bigcap_{i=1}^{n} A_i = \{..., -2, -1, 0, 1\} = A_1$

Exercise 9

We want to show that if $A \bigcup B = B$, then $A \bigcap B = A$.

This is a proof of an implication. We use a direct proof.

Let A and B be two sets in a domain D. To show that $A \cap B = A$, we show that $A \cap B \subset A$ and $A \subset A \cap B$

a) $A \cap B \subset A$.

Let x be an element of $A \cap B$. Then $x \in A$ and $x \in b$, and a fortiori $x \in A$.

b) $A \subset A \bigcap B$

Let x be an element of A. Since $A \subset A \bigcup B$, $x \in A \bigcup B$. The premise is that $A \bigcup B = B$. Therefore $x \in B$. Since x is in A and in B, $x \in A \cap B$.

This concludes the proof.

Exercise 10

We want to show that if $A \cap B = A$, then $B \cap (B \cap \overline{A}) = A$.

This is a proof of an implication. We use a direct proof.

We simplify $B \cap (B \cap \bar{A})$:

$$B \cap \left(\overline{B \cap \overline{A}}\right) = B \cap \left(\overline{B} \cup \overline{A}\right)$$

= $B \cap \left(\overline{B} \cup \overline{A}\right)$
= $B \cap \left(\overline{B} \cup A\right)$
= $(B \cap \overline{B}) \cup (B \cap A)$
= $\emptyset \cup (B \cap A)$
= $B \cap A$
De Morgan's law
Complementation law
Distributivity law
Complement set 1
Absorption law 1

Therefore, $B \cap \left(\overline{B \cap \overline{A}}\right) = B \cap A = A \cap B$. According to the premise, $A \cap B = A$. Therefore $B \cap \left(\overline{B \cap \overline{A}}\right) = A$. This concludes the proof.

Extra Credit

- a) Let A and B be two sets. We want to show that $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$. Let us define $LHS = \mathcal{P}(A) \cap \mathcal{P}(B)$ and $RHS = \mathcal{P}(A \cap B)$. We want to show LHS = RHS. We will show that $LHS \subset RHS$ and $RHS \subset LHS$.
 - i) Let $S \in LHS$. By definition of LHS, $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(A)$. Since $S \in \mathcal{P}(A)$, $S \subset A$. Similarly, since $S \in \mathcal{P}(B)$, $S \subset B$. Therefore S is a subset of $A \cap B$, which is equivalent to saying that $S \in \mathcal{P}(A \cap B)$.

ii) Let $S \in RHS$. By definition of RHS, $S \in \mathcal{P}(A \cap B)$, therefore $S \subset A \cap B$. By definition of $A \cap B$, we have that $S \subset A$ and $S \subset B$, i.e. $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, i.e. $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

We conclude that $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

b) We want to show that there exists two sets A and B such that $\mathcal{P}(A) \bigcup \mathcal{P}(B) \neq \mathcal{P}(A \bigcup B)$. Let $A = \{a, b\}$ and $B = \{c, d\}$. then: $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{P}(B) = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$ Therefore, $\mathcal{P}(A) \bigcup \mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}\}$ As $A \bigcup B = \{a, b, c, d\}$ we have, $\mathcal{P}(A \bigcup \mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\} \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}$ Therefore $\mathcal{P}(A) \bigcup \mathcal{P}(B) \neq \mathcal{P}(A \bigcup B)$.