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Exercise 1

a: 2
b: 3
c: -4
d: -3
e: 7
f : -6
g: 1
h: 2

Exercise 2

a) Show that the statement
”If x is a real number such that x2 + 2 = 0, then x4 = −5 ”
is true.

Let P be the statement. P is an implication of the form p→ q with p defined as ”x is a real
number with x2 + 2 = 0” and q defined as ”x4 = −5”. As p is false, the proposition P is
always true.

b) If x and y are real numbers such that x < y, show that there exists a real number z with
x < z < y.

This is an existence proof: we only need to find one example. Let us define z = x+y
2 . We

show that x < z and z < y.

z − x = x+y
2 − x = y−x

2 > 0 as x < y.

Similarly,
y − z = y − x+y

2 = y−x
2 > 0 as x < y.

Therefore x < z < y: we found one real number z that satisfies x < z < y: this concludes the
proof.
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Exercise 3

Let x be a real number. Show that b3xc = bxc+ bx+ 1
3c+ bx+ 2

3c.

Let us write x = n + ε, where n is an integer and ε is a real number and 0 ≤ ε < 1. n is the
largest integer that is smaller than x; by definition, n = bxc. We use a proof by case (similar to
the proof used in class for b2xc):

a) : If 0 ≤ ε < 1/3, then 0 ≤ 3ε < 1, 0 < ε+ 1/3 < 1 and 0 < ε+ 2/3 < 1. Therefore,

b3xc = b3n+ 3εc = 3n

and

bxc+ bx+ 1/3c+ bx+ 2/3c = bn+ εc+ bn+ ε+ 1/3c+ bn+ ε+ 2/3c
= n+ n+ n

= 3n

b) If 1/3 ≤ ε < 2/3, then 1 ≤ 3ε < 2, 0 < ε+ 1/3 < 1 and 1 ≤ ε+ 2/3 < 2. Therefore,

b3xc = b3n+ 3εc = 3n+ 1

and

bxc+ bx+ 1/3c+ bx+ 2/3c = bn+ εc+ bn+ ε+ 1/3c+ bn+ ε+ 2/3c
= n+ n+ n+ 1

= 3n+ 1

c) If 2/3 ≤ ε < 1, then 2 ≤ 3ε < 3, 1 < ε+ 1/3 < 2 and 1 ≤ ε+ 2/3 < 2. Therefore,

b3xc = b3n+ 3εc = 3n+ 2

bxc+ bx+ 1/3c+ bx+ 2/3c = bn+ εc+ bn+ ε+ 1/3c+ bn+ ε+ 2/3c
= n+ n+ 1 + n+ 1

= 3n+ 2

Based on the method of proof by case, we conclude that b3xc = bxc+ bx+ 1/3c+ bx+ 2/3c is true
for all x.
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Exercise 4

Show that for all real number x and all strictly positive integer n,
⌊
bnxc
n

⌋
= bxc

Let us define k = bnxc and m = bxc. By definition of floor, we have the two properties:
k ≤ nx < k + 1

and
m ≤ x < m+ 1
Let us multiply the second inequalities by n:
nm ≤ nx < n(m+ 1)

We notice that:
k ≤ nx and nx < n(m+ 1); therefore k < n(m+ 1).
k ≤ nx and nm ≤ nx. Therefore k and nm are two integers smaller than nx. By definition of floor,
k is the largest integer smaller that nx. Therefore nm ≤ k.

Combining those two inequalities, we get nm ≤ k < n(m + 1). After division by n, m < k
n <

m+ 1. Therefore m is the floor of k
n . Replacing m and k by their values, we get:

m = bxc =

⌊
k

n

⌋
=

⌊
bnxc
n

⌋
The property is therefore true.

Extra Credit

This is a generalization of exercise 3:
Let x be a real number and N an integer greater or equal to 3. Show that bNxc = bxc+ bx+

1
N c+ bx+ 2

N c+ . . .+ bx+ N−1
N c.

We could use a proof by case that generalizes the solution described for exercise 1, using N
case; there is however a faster and maybe more elegant solution.

Let us define:

f(x) = bNxc − bxc − bx+ 1
N c − bx+ 2

N c − . . .− bx+ N−1
N c

We show first that f(x) is periodic, with 1
N being one period. For this, we need to show that:

∀x ∈ R, f
(
x+ 1

N

)
= f(x)

Let x be a real number. Notice that:

f

(
x+

1

N

)
= bN(x+

1

N
)c − bx+

1

N
c − bx+

2

N
c − . . .− bx+

1

N
+
N − 2

N
c − bx+

1

N
+
N − 1

N
c

= bNx+ 1c − bx+
1

N
c − . . .− bx+

N − 1

N
c − bx+ 1c

= bNxc+ 1− bx+
1

N
c − . . .− bx+

N − 1

N
c − bxc − 1

= f(x)

Since this is true with no conditions on x, it is true for all x, and therefore f is periodic, with 1/N
being one period.
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A periodic function needs to be defined only on one period, here in the interval
[
0, 1

N

)
. Let x

be in this interval. Then:

0 ≤ x < 1

N
< 1

0 ≤ x+
1

N
<

1

N
+

1

N
=

2

N
< 1

. . .

0 ≤ x+
N − 1

N
<

1

N
+
N − 1

N
=
N

N
= 1

0 ≤ Nx < N
1

N
= 1

Therefore f(x) = 0.

Since f(x) = 0 on one of its period, we have f(x) = 0 ∀x ∈ R. Therefore:

bNxc = bxc+ bx+ 1
N c+ bx+ 2

N c+ . . .+ bx+ N−1
N c
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