Homework 6 Solutions

ECS 20 (Fall 2016)

Patrice Koehl koehl@cs.ucdavis.edu

October 25, 2016

Exercise 1

- a) Let us show that $\lceil \lfloor x \rfloor \rceil = \lfloor x \rfloor$ is true for all real number x. Let us define $y = \lfloor x \rfloor$; as y is an integer, the ceiling value of y is equal to y, i.e. $\lceil y \rceil = y$. Replacing y by its value, we get, $\lceil \lfloor x \rfloor \rceil = \lfloor x \rfloor$.
- b) Let x=1.6 and y=2.0. $\lfloor xy \rfloor = \lfloor 3.2 \rfloor = 3$. However, $\lfloor x \rfloor \times \lfloor y \rfloor = 1 \times 2 = 2$. Therefore, we have found a counter example to the proposition $\lfloor x \times y \rfloor = \lfloor x \rfloor \times \lfloor y \rfloor$ for all $x \in \mathbb{R}$.
- c) The property does not hold for all positive real numbers. Let us consider x = 0.25. $\lfloor \sqrt{x} \rfloor = \lfloor 0.5 \rfloor = 0$ and $\lfloor \sqrt{\lceil 0.25 \rceil} \rfloor = \lfloor \sqrt{1} \rfloor = \lfloor 1 \rfloor = 1$.

Exercise 2

Show that x^3 is $\mathcal{O}(x^4)$ but that x^4 is not $\mathcal{O}(x^3)$.

a) Let us show that x^3 is $\mathcal{O}(x^4)$

Let us assume that 1 < x. Since x > 0, we can multiply this inequality by x: $x < x^2$, again: $x^2 < x^3$ and finally $x^3 < x^4$.

We have shown that there exists k (k = 1), and there exists C (C = 1), such that if x > k, then $x^3 < Cx^4$: we can conclude that x^3 is $\mathcal{O}(x^4)$.

b) Let us show that x^4 is not $\mathcal{O}(x^3)$.

We use a proof by contradiction: let us suppose that the proposition is true, i.e. that x^4 is $\mathcal{O}(x^3)$. By definition of \mathcal{O} , this means that:

 $\exists k \in \mathbb{R}, \exists C \in \mathbb{R} \text{ if } x > k \text{ then } |x^4| < C|x^3|.$

Let $D = \max\{2, k, C\}$. Therefore $D > 0, D \ge k$, and $D \ge C$.

Let x be a real number with x > D. Since $D \ge k$, we have $x^4 < Dx^3$. Since x > 0, we can divide this inequality by x^3 : we get x < D. But we supposed that x > D: we have reached a contradiction. Therefore, the hypothesis, x^4 is $\mathcal{O}(x^3)$, is false. We can conclude that x^4 is not $\mathcal{O}(x^3)$.

Exercise 3

a) Show that 2x - 9 is $\Theta(x)$.

One option is to prove that 2x - 9 is both $\mathcal{O}(x)$ and $\Omega(x)$. In this simple case however, we directly "squeeze" 2x - 9 between two functions that are of order x. First, lest us notice that $\forall x \in \mathbb{R}, 2x - 9 < 2x$.

Second, we note that if x > 9, then x - 9 > 0 and therefore x + x - 9 > x, i.e. 2x - 9 > x. Summarizing: for x > 9, x < 2x - 9 < 2x. Therefore 2x - 9 is $\Theta(x)$.

b) Show that $3x^2 + x - 5$ is $\Theta(x^2)$.

Again, one option is to prove that $3x^2 + x - 5$ is both $\mathcal{O}(x^2)$ and $\Omega(x^2)$. In this simple case however, we directly "squeeze" $3x^2 + x - 5$ between two functions that are of order x^2 . We note first that when x > 5, then x - 5 > 0, and therefore $3x^2 + x - 5 > 3x^2$. Second, we note that when 1 < x, $x < x^2$, and therefore $x - 5 < x^2 - 5 < x^2$. This leads to $3x^2 + x - 5 < 4x^2$ when x > 1. Summarizing: for x > 5, $3x^2 < 3x^2 + x - 5 < 4x^2$. Therefore $3x^2 + x - 5$ is $\Theta(x^2)$.

c) Show that $\lfloor x + \frac{2}{3} \rfloor$ is $\Theta(x)$.

Again, we will "squeeze" $\lfloor x + \frac{2}{3} \rfloor$ between two functions that are or order x. By definition of the function floor, $\lfloor x + \frac{2}{3} \rfloor \leq x + \frac{2}{3}$. If $\frac{2}{3} < x$, this leads to $\lfloor x + \frac{2}{3} \rfloor < 2x$. Similarly, $x + \frac{2}{3} < \lfloor x + \frac{2}{3} \rfloor + 1$, which we rewrite as $x - \frac{1}{3} < \lfloor x + \frac{2}{3} \rfloor$. If x > 1, then $\frac{x}{3} > \frac{1}{3}$; multiplying by -1, $-\frac{x}{3} < -\frac{1}{3}$, and adding x, we get $x - \frac{x}{3} < x - \frac{1}{3}$, namely $\frac{2x}{3} < x - \frac{1}{3}$, therefore $\frac{2x}{3} < \lfloor x + \frac{2}{3} \rfloor$. Summarizing: for x > 1, $\frac{2x}{3} < \lfloor x + \frac{2}{3} \rfloor < 2x$. Therefore $\lfloor x + \frac{2}{3} \rfloor$ is $\Theta(x)$.

d) Show that $\log_{10}(x)$ is $\Theta \log_2(x)$.

Notice first that $\log_{10}(x) = \log_{10}(2) \times \log_2(x)$. Since $\log_{10}(x)$ and $\log_2(x)$ only differ by a (positive) constant, there are of the same order. Hence $\log_{10}(x)$ is $\Theta(\log_2(x))$.

Exercise 4

Let a and b be two integers. We want to prove that

If $a^2 - b^2 + 2ab$ is odd, then a - b is odd using a proof by contradiction. Let $p: a^2 - b^2 + 2ab$ is odd and q: a - b is odd

Proof by contradiction: we suppose that $p \to q$ is false, i.e. that p is true AND q is false.

Since q is false, a - b is even: there exists an integer k such that a - b = 2k. Then

 $a^2 - b^2 + 2ab = (a - b)(a + b) + 2ab = 2k(a + b) + 2ab = 2[k(a + b) + ab]$, i.e. $a^2 - b^2 + 2ab$ is even. However, we have supposed p is true, namely that $a^2 - b^2 + 2ab$ is odd. We have reached a contradiction.

Therefore $p \to q$ is true.

Exercise 5

Use a proof by contradiction to show that:

p: There exists a strictly positive real number r such that, for all real number x, if $x - \lfloor x \rfloor < r$ then |3x| = 3x.

Assumption: p is false. This means that:

For all strictly positive real numbers r, there exists a real number x such that $x - \lfloor x \rfloor < r$ AND $|3x| \neq 3x$.

Let us assume that we have found such a real number x. Since $x - \lfloor x \rfloor < r$ for all strictly positive number r, we have that $x - \lfloor x \rfloor \le 0$. We know also that $x - \lfloor x \rfloor \ge 0$ (by definition of floor). Therefore $x = \lfloor x \rfloor$, i.e. x is an integer.

Since x is an integer, 3x is an integer, and therefore $\lfloor 3x \rfloor = 3x$. However, we had assumed that $\lfloor 3x \rfloor \neq 3x$. We have reached a contradiction and therefore such a real number x does not exist; the proposition $\neg p$ is false, therefore p is true!

Extra Credit

a) List of divisors of 6, not including 6: $F_6 = 1, 2, 3$. Sum $(F_6) = 1+2+3 = 6$. List of factors of of 28, not including 28: $F_{28} = 1, 2, 4, 7, 14$. Sum $(F_{28}) = 1+2+4+7+14 = 28$.

Since 6 and 28 are sums of their respective factors (excluding themselves), we have shown that 6 and 28 are perfect numbers.

b) Suppose that $(2^p - 1)$ is prime, and let $n = 2^{p-1} \times (2^p - 1)$. The list of divisors of n is given by :

$$D_n = \{1, (2^p - 1), \\ 2, 2(2^p - 1), \\ 2^2, 2^2(2^p - 1), \\ 2^3, 2^3(2^p - 1), \\ \dots \\ 2^{p-1}, 2^{p-1}(2^p - 1)\}$$

We need to exclude n from this list, who becomes:

$$D_n^* = \{1, (2^p - 1), \\ 2, 2(2^p - 1), \\ 2^2, 2^2(2^p - 1), \\ 2^3, 2^3(2^p - 1), \\ \dots \\ 2^{p-1}\}$$

Sum of all the divisors in D_n^* , S_n , is given by:

$$S_n = (1+2+2^2+\ldots+2^{p-1}) + (1+2+2^2+\ldots+2^{p-2}) \times (2^p-1)$$

= $2^p - 1 + (2^{p-1} - 1) \times (2^p - 1)$
= $(2^p - 1) \times (1+2^{p-1} - 1)$
= $(2^p - 1) \times 2^{p-1}$ (1)
= n

Therefore n is a perfect number.