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Exercise 1

a) Let us show that [|x|] = |z] is true for all real number x. Let us define y = |z|; as y is an

integer, the ceiling value of y is equal to y, i.e. [y] = y. Replacing y by its value, we get,

[lz]] = [=].

b) Let x=1.6 and y=2.0. |zy| = |3.2] = 3. However, |z| X |y] = 1 x 2 = 2. Therefore, we have

found a counter example to the proposition|z x y| = |z] x |y] for all z € R.

c¢) The property does not hold for all positive real numbers. Let us consider x = 0.25. |/z| =

|0.5] =0 and |[/[0.25]] = [V1] = |1] = 1.

Exercise 2

Show that 2? is O(z*) but that z* is not O(z?).

a)

Let us show that 2? is O(x?)

Let us assume that 1 < 2. Since x > 0, we can multiply this inequality by z: = < z2, again:
2?2 < 2% and finally 23 < z?.

We have shown that there exists k (k = 1), and there exists C' (C' = 1), such that if z > k,
then 2% < Cz*: we can conclude that 23 is O(z%).
Let us show that ? is not O(z3).

We use a proof by contradiction: let us suppose that the proposition is true, i.e. that x? is
O(23). By definition of O, this means that:

Jk € R,3C € R if z > k then |z?] < C|23].
Let D = max{2,k,C}. Therefore D >0, D > k, and D > C.

Let = be a real number with & > D. Since D > k, we have 2* < Dz3. Since z > 0, we can
divide this inequality by z3: we get < D. But we supposed that z > D: we have reached
a contradiction. Therefore, the hypothesis, z# is O(z?3), is false. We can conclude that z* is
not O(z3).



Exercise 3

a)

Show that 2z — 9 is O(z).

One option is to prove that 2z — 9 is both O(x) and (z). In this simple case however, we
directly “squeeze” 2x — 9 between two functions that are of order x. First, lest us notice that
Vr e R,2x —9 < 2.

Second, we note that if x > 9, then x — 9 > 0 and therefore x +x — 9 > z, i.e. 20 —9 > x.
Summarizing: for z > 9, x < 2z — 9 < 2z. Therefore 2z — 9 is O(z).

Show that 3z% + x — 5 is ©(z?).

Again, one option is to prove that 3z2 +z — 5 is both O(2?) and Q(22). In this simple case
however, we directly “squeeze” 322 4+ x — 5 between two functions that are of order z2.

We note first that when > 5, then  — 5 > 0, and therefore 322 + 2 — 5 > 3z2.

Second, we note that when 1 < z, z < 22, and therefore z — 5 < 22 — 5 < 2. This leads to
322 + 2 — 5 < 422 when z > 1.

Summarizing: for x > 5, 322 < 322 + x — 5 < 4z%. Therefore 322 + z — 5 is O(x?).

Show that |z + 2] is O(x).

Again, we will “squeeze” |x + %J between two functions that are or order x.

By definition of the function floor, |z + 2] <z + 2. If 2 < x, this leads to |z + Z] < 2.
Similarly, z + 2 < [z + 2] 4 1, which we rewrite as z — 1 < |z + Z].

If x > 1, then § > %; multiplying by —1, —§ < —%, and adding =, we get v — § < x — %,

namely % < z — §, therefore 2f < [z + 2].

Summarizing: for z > 1, 2 < |2 + 2| < 2z. Therefore |z + 2| is O(x).
Show that log,(z) is © logy(z).

Notice first that log;o(x) = log;(2) x logy(x). Since log;y(z) and logy(z) only differ by a
(positive) constant, there are of the same order. Hence log;((z) is O(logy(x)).

Exercise 4

Let a and b be two integers. We want to prove that
If a®> — b% 4 2ab is odd, then a — b is odd
using a proof by contradiction.

Let

p:a® —b? 4+ 2ab is odd
and

q:a—bisodd

Proof by contradiction: we suppose that p — ¢ is false, i.e. that p is true AND ¢ is false.

Since q is false, a — b is even: there exists an integer k such that a — b = 2k. Then

a? — b +2ab = (a — b)(a+b) + 2ab = 2k(a + b) + 2ab = 2[k(a + b) + ab], i.e. a® — b* + 2ab is
even. However, we have supposed p is true, namely that a? — b% + 2ab is odd. We have reached a
contradiction.

Therefore p — ¢ is true.



Exercise 5

Use a proof by contradiction to show that:

p : There exists a strictly positive real number r such that, for all real number z, if x — |z] < r
then [3z] = 3x.

Assumption: p is false. This means that:

For all strictly positive real numbers r, there exists a real number x such that x — |z] < r AND

|3z # 3.

Let us assume that we have found such a real number z. Since x — || < r for all strictly
positive number r, we have that z — || < 0. We know also that x — |z] > 0 (by definition of
floor). Therefore z = |z], i.e. x is an integer.

Since z is an integer, 3z is an integer, and therefore |3x| = 3x. However, we had assumed that
|3x] # 3xz. We have reached a contradiction and therefore such a real number = does not exist; the
proposition —p is false, therefore p is true!

Extra Credit

a) List of divisors of 6, not including 6: Fg = 1,2,3. Sum(Fs) = 1+2+3 = 6.
List of factors of of 28, not including 28: Fhg = 1,2,4,7,14. Sum(Fhrg)=1+2+4+7+14 = 28.

Since 6 and 28 are sums of their respective factors (excluding themselves) , we have shown
that 6 and 28 are perfect numbers.

b) Suppose that (2” — 1) is prime, and let n = 2P~! x (2P — 1). The list of divisors of n is given
by :

D, = {1,(2?-1),
2,2(2F — 1),
22, 22(2P — 1),
23,23(2P — 1),

b=t 2P=1(2P — 1)}

We need to exclude n from this list, who becomes:

D:L = {17 (2p - 1)7

2,2(2° - 1),
22?22(2p - 1)7
23,2%(20 — 1),
or—1y



Sum of all the divisors in D}, S, is given by:

Sp o= (14+2+22+. 427+ (1 +2+27+... 42773 x (2P - 1)
2 — 14 (2771 —1) x (2P - 1)

= (2P-1)x(1+2r71-1)

(2P — 1) x 2P71

= n

Therefore n is a perfect number.



