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Exercise 1

a) Let us show that dbxce = bxc is true for all real number x. Let us define y = bxc; as y is an
integer, the ceiling value of y is equal to y, i.e. dye = y. Replacing y by its value, we get,
dbxce = bxc.

b) Let x=1.6 and y=2.0. bxyc = b3.2c = 3. However, bxc× byc = 1× 2 = 2. Therefore, we have
found a counter example to the propositionbx× yc = bxc × byc for all x ∈ R.

c) The property does not hold for all positive real numbers. Let us consider x = 0.25. b
√
xc =

b0.5c = 0 and b
√
d0.25ec = b

√
1c = b1c = 1.

Exercise 2

Show that x3 is O(x4) but that x4 is not O(x3).

a) Let us show that x3 is O(x4)

Let us assume that 1 < x. Since x > 0, we can multiply this inequality by x: x < x2, again:
x2 < x3 and finally x3 < x4.

We have shown that there exists k (k = 1), and there exists C (C = 1), such that if x > k,
then x3 < Cx4: we can conclude that x3 is O(x4).

b) Let us show that x4 is not O(x3).

We use a proof by contradiction: let us suppose that the proposition is true, i.e. that x4 is
O(x3). By definition of O, this means that:

∃k ∈ R, ∃C ∈ R if x > k then |x4| < C|x3|.
Let D = max{2, k, C}. Therefore D > 0, D ≥ k, and D ≥ C.

Let x be a real number with x > D. Since D ≥ k, we have x4 < Dx3. Since x > 0, we can
divide this inequality by x3: we get x < D. But we supposed that x > D: we have reached
a contradiction. Therefore, the hypothesis, x4 is O(x3), is false. We can conclude that x4 is
not O(x3).
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Exercise 3

a) Show that 2x− 9 is Θ(x).

One option is to prove that 2x − 9 is both O(x) and Ω(x). In this simple case however, we
directly “squeeze” 2x− 9 between two functions that are of order x. First, lest us notice that
∀x ∈ R, 2x− 9 < 2x.

Second, we note that if x > 9, then x− 9 > 0 and therefore x + x− 9 > x, i.e. 2x− 9 > x.

Summarizing: for x > 9, x < 2x− 9 < 2x. Therefore 2x− 9 is Θ(x).

b) Show that 3x2 + x− 5 is Θ(x2).

Again, one option is to prove that 3x2 + x− 5 is both O(x2) and Ω(x2). In this simple case
however, we directly “squeeze” 3x2 + x− 5 between two functions that are of order x2.

We note first that when x > 5, then x− 5 > 0, and therefore 3x2 + x− 5 > 3x2.

Second, we note that when 1 < x, x < x2, and therefore x− 5 < x2 − 5 < x2. This leads to
3x2 + x− 5 < 4x2 when x > 1.

Summarizing: for x > 5, 3x2 < 3x2 + x− 5 < 4x2. Therefore 3x2 + x− 5 is Θ(x2).

c) Show that bx + 2
3c is Θ(x).

Again, we will “squeeze” bx + 2
3c between two functions that are or order x.

By definition of the function floor, bx + 2
3c ≤ x + 2

3 . If 2
3 < x, this leads to bx + 2

3c < 2x.

Similarly, x + 2
3 < bx + 2

3c+ 1, which we rewrite as x− 1
3 < bx + 2

3c.
If x > 1, then x

3 > 1
3 ; multiplying by −1, −x

3 < −1
3 , and adding x, we get x − x

3 < x − 1
3 ,

namely 2x
3 < x− 1

3 , therefore 2x
3 < bx + 2

3c.
Summarizing: for x > 1, 2x

3 < bx + 2
3c < 2x. Therefore bx + 2

3c is Θ(x).

d) Show that log10(x) is Θ log2(x).

Notice first that log10(x) = log10(2) × log2(x). Since log10(x) and log2(x) only differ by a
(positive) constant, there are of the same order. Hence log10(x) is Θ(log2(x)).

Exercise 4

Let a and b be two integers. We want to prove that
If a2 − b2 + 2ab is odd, then a− b is odd
using a proof by contradiction.
Let
p : a2 − b2 + 2ab is odd
and
q : a− b is odd
Proof by contradiction: we suppose that p→ q is false, i.e. that p is true AND q is false.
Since q is false, a− b is even: there exists an integer k such that a− b = 2k. Then
a2 − b2 + 2ab = (a − b)(a + b) + 2ab = 2k(a + b) + 2ab = 2[k(a + b) + ab], i.e. a2 − b2 + 2ab is

even. However, we have supposed p is true, namely that a2 − b2 + 2ab is odd. We have reached a
contradiction.

Therefore p→ q is true.
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Exercise 5

Use a proof by contradiction to show that:
p : There exists a strictly positive real number r such that, for all real number x, if x−bxc < r

then b3xc = 3x.
Assumption: p is false. This means that:
For all strictly positive real numbers r, there exists a real number x such that x−bxc < r AND

b3xc 6= 3x.
Let us assume that we have found such a real number x. Since x − bxc < r for all strictly

positive number r, we have that x − bxc ≤ 0. We know also that x − bxc ≥ 0 (by definition of
floor). Therefore x = bxc, i.e. x is an integer.

Since x is an integer, 3x is an integer, and therefore b3xc = 3x. However, we had assumed that
b3xc 6= 3x. We have reached a contradiction and therefore such a real number x does not exist; the
proposition ¬p is false, therefore p is true!

Extra Credit

a) List of divisors of 6, not including 6: F6 = 1, 2, 3. Sum(F6) = 1+2+3 = 6.
List of factors of of 28, not including 28: F28 = 1, 2, 4, 7, 14. Sum(F28)=1+2+4+7+14 = 28.

Since 6 and 28 are sums of their respective factors (excluding themselves) , we have shown
that 6 and 28 are perfect numbers.

b) Suppose that (2p − 1) is prime, and let n = 2p−1 × (2p − 1). The list of divisors of n is given
by :

Dn = {1, (2p − 1),

2, 2(2p − 1),

22, 22(2p − 1),

23, 23(2p − 1),

. . .

2p−1, 2p−1(2p − 1)}

We need to exclude n from this list, who becomes:

D∗
n = {1, (2p − 1),

2, 2(2p − 1),

22, 22(2p − 1),

23, 23(2p − 1),

. . .

2p−1}
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Sum of all the divisors in D∗
n, Sn, is given by:

Sn = (1 + 2 + 22 + . . . + 2p−1) + (1 + 2 + 22 + . . . + 2p−2)× (2p − 1)

= 2p − 1 + (2p−1 − 1)× (2p − 1)

= (2p − 1)× (1 + 2p−1 − 1)

= (2p − 1)× 2p−1 (1)

= n

Therefore n is a perfect number.
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