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Exercise 1

e) -2002 divided by 89: Quotient = -23; Remainder = 45; Check : -23*89+45 = -2002.

f) 0 divided by 19: Quotient = 0; Remainder = 0; Check : 0*17+0 = 0.

g) 1,234,567 divided by 101: Quotient = 12223; Remainder = 44; Check : 12223*101+44 =
1,234,567.

h) -100 divided by 103: Quotient = -1; Remainder = 3; Check : -1*103+3 = -100.

Exercise 2

a) Let us suppose that gcd(a, a− 1) = k where k>1.
There exist two positive integers m and n, such that a = mk and a− 1 = nk.
Then

a− (a− 1) = mk − nk = (m− n)k

and at the same time

a− (a− 1) = 1

Therefore (m− n)k = 1, i.e. k is a divisor of 1, but k > 1 (our hypothesis): we have reached
a contradiction. Therefore, gcd(a, a− 1) = 1

b) We want to solve the equation a + 2b = 2ab, were a and b are positive integers.
We look at two cases:

i) a = 0. The equation becomes 2b = 0, therefore b = 0.

ii) a 6= 0.
From a + 2b = 2ab, we get a = 2ab− 2b = 2b(a− 1). Because a 6= 0, b 6= 0 and a 6= 1.
From a = 2b(a−1), we get that a−1 divides a. From part a), we know that gcd(a, a−1) =
1. Thus, there is only one possibility, a− 1 = 1 and therefore a = 2.
Replacing in the original equation, we get 2 + 2b = 4b, hence b = 1.

The set of solutions is therefore {(0, 0), (2, 1)}.
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Exercise 3

Let a, b, and c be three integers. We need to prove a biconditional p ↔ q, where p and q are the
two propositions:
p: The equation ax + by = c has at least one solution (x1, y1)

and
q : gcd(a, b)/c

Proving p ↔ q is equivalent to proving p → q and q → p. We will use direct proofs for both
implications.

a) p→ q

Hypothesis: p is true, namely, the equation ax + by = c has at least one solution (x1, y1).
Therefore ax1 + by1 = c.

Let g = gcd(a, b): g divides a and g divides b. Therefore, there exists two integers k and l
such that a = gk and b = gl. Replacing in the equation above, we get:

gkx1 + gly1 = c

which we rewrite as:

g(kx1 + ly1) = c

Since kx1 + ly1 is an integer, g divides c, namely q is true.

b) q → p

Hypothesis: q is true, namely gcd(a, b)/c.

Let g = gcd(a, b). Since g/c, there exists an integer m such that c = mg.

Also, based on Bezout’s identity, there exists two integers k and l such that g = ka + lb.

Multiplying this equation by m, we get mg = kma + lmb, i.e. c = kma + lmb. We have
therefore found a pair (x1, y1) with x1 = km and y1 = lm such that ax1 + by1 = c: p is true.

In conclusion, p↔ q.

Exercise 4

Let a, b and n be three integers such that gcd(a, n) = 1 and gcd(b, n) = 1.

Since gcd(a, n) = 1, according to Bezout’s identity, there exists two integers k and l such that
ka + ln = 1. Multiplying by b, we get kab + lnb = b.

Let g = gcd(ab, n). There exist two integers u and v such that ab = ug and n = vg. Replacing
in the equation above, we get kgu + lvgb = b, or g(ku + lvb) = b. Hence, g divides b. Since g also
divides n, g is a common divisor of b and n. Since gcd(b, n) = 1, the only possibility is g = 1, and
therefore gcd(ab, n) = 1, which concludes the proof.

2



Exercise 5

We consider the equation 3x2 + 5y2 = 19. Let us follow the hint:
Since 5 ≡ 0(mod 5), 5y2 ≡ 0(mod 5). Hence 3x2 + 5y2 ≡ 3x2(mod 5).

Let us write x = 5q+r, with 0 ≤ r ≤ 4. Then x2 = 25q2+10q+r2, and therefore x2 ≡ r2(mod 5),
and 3x2 ≡ 3r2(mod 5). For r = 0, 1, 2, 3, 4, we get 3x2 ≡ 0, 3, 2, 2, 3(mod 5), respectively.
On the other hand, 19 ≡ 4(mod 5). Therefore we cannot have 3x2 + 5y2 ≡ 19(mod 5), and the
equation does not have any solution.

Exercise 6

We can divide all integers larger than 3 into three sets: those that have the form 3k, those that
have the form 3k + 1 and those that have the form 3k + 2, where k ∈ Z .

a) If n is in form of 3k, then it is not a prime as it is a multiple of 3.

b) If n is in form of 3k + 1, then 2n + 1 = 6k + 2 + 1 = 3(2k + 1), is not a prime, as it is a
multiple of 3.

c) If n is in form of 3k + 2, then 4n+ 1 = 12k + 9 = 3(4k + 3), is not a prime, as it is a multiple
of 3.

Therefore, if n is greater than 3, n, 2n + 1 and 4n + 1 cannot all be prime.

Exercise 7

The three primes 3, 5, and 7 verify the property.

Exercise 8

We need to prove an implication of the form p→ q, where:
p: n is a positive integer such that the sum of its divisors is n + 1
q: n is prime
We will use an indirect proof, namely we will show that ¬q → ¬p.

Hypothesis: ¬q is true, i.e. n is not prime.
As n is not a prime, there is at least one positive integer m other than 1 and n itself that divides

n. Therefore, the sum of all divisors is S > 1 +n+m > n+ 1. Therefore S 6= n+ 1 and ¬p is true.
We can conclude that ¬q → ¬p is true, therefore p→ q is true.

Extra Credit

We want to solve gcd(a, b) + lcm(a, b) = b+ 9, where a and b are two natural numbers (i.e. positive
non zero integers).
As written, the equation looks very complicated. Let us transform it to make it more tractable.
Most terms in the equation can be written as multiples of g = gcd(a, b):
Since g is a divisor of a and b, there exists non-zero integers m and n such a = mg and b = ng. We
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also know that g.lcm(a, b) = ab, then g.lcm(a, b) = g.g.mn and therefore lcm(a, b) = gmn.
Replacing in the equation, we get: g+ gmn = gn+ 9, which can be rewritten as g(1 +mn−n) = 9.

This shows that g divides 9. There are 3 possibilities for g: g = 1, or g = 3 or g = 9:

1) g = 1. The equation becomes lcm(a, b) = b + 8, with lcm(a, b) = ab. Then ab = b + 8, or
b(a− 1) = 8. Then b is a divisor of 8, i.e. b = 1, b = 2, b = 4 or b = 8.

• b = 1: a− 1 = 8 then a = 9. (9, 1) is one solution of the equation.

• b = 2: a− 1 = 4 then a = 5. (5, 2) is another solution of the equation.

• b = 4: a− 1 = 2 then a = 3. (3, 4) is another solution of the equation.

• b = 8: a − 1 = 1 then a = 2. This would imply gcd(a, b) = 2, which is in contradiction
with g = 1. This case does not yield any new solutions .

2) g = 3. The equation becomes lcm(a, b) = b + 6. lcm(a, b) is a multiple of b: lcm(a, b) = mb,
hence b(m − 1) = 6. Hence b divides 6, i.e. b = 1, b = 2, b = 3 or b = 6. Since b ≥ g, we
cannot have in this case b = 1 or b = 2. We need to check two cases:

• If b = 3, then the equation becomes 3 + lcm(a, b) = 3 + 9, i.e. lcm(a, b) = 9. Since
lcm(a, b) is a multiple of a, we find that a divides 9. We also know that a is a multiple
of 3, as g = 3 is a divisor of a. Then a = 3 or a = 9. We cannot have a = 3 (since we
would have lcm(a, b) = 3), hence a = 9. (9, 3) is another solution of the equation.

• If b = 6, the equation becomes 3 + lcm(a, b) = 6 + 9, hence lcm(a, b) = 12. As above, a
is a multiple of 3 and a divides 12. If a = 3 or a = 6, the we would have lcm(a, b) = 6
NO. If a = 12, then gcd(a, b) = 6: NO. In this case, we do not have new solutions.

3) g = 9. The equation becomes lcm(a, b) = b. Since lcm(a, b). gcd(a, b) = ab, we get 9b = ab, i.e.
a = 9 (we do not have to consider b=0, as we look for natural numbers). Since lcm(a, b) = b
is a multiple of a, there exists k > 0 such that b = 9k. All values of k > 0 are possible.

In conclusion, the solutions are: {(9, 1), (5, 2), (3, 4), (9, 3), (9, 9k)} where all values of (k > 0) are
possible.
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