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Regions in the plane

Before moving to our central problem of 
comparing surfaces in R3, we ask a simpler 
question:

Problem:  How similar are two regions in the 
plane?

This is already an important problem.

Start with an easy case:

Before moving to the problem of comparing surfaces in R3, we 
ask a simpler question:   
  
Problem: How similar are two regions in the plane? 

This is already an important problem.

Question:  How close is a square to a circle?



Which of these nine shapes is  
closest to

?

Which is second closest?

Distance between shapes



Application - Facial Recognition

Start with a 2D photograph. 
Create some planar regions from a face.   
Compare their shapes.



Application - Computer Vision
“Purring Test”  Cat or Dog? 

Flip a coin - correct 50% of the time    
Software fifteen years ago - not much better   
Today - 99%



Dog or Muffin? 

Application - Computer Vision
Still a challenge



Application - Computer Vision
Puppy or Bagel? 



Application - Character Recognition
What letter is this? 



How close are these two shapes? 

Test Case

Our Goal:  Find a mathematical framework to measure  
the similarity of two shapes. 

Can either compare curves or enclosed regions:



Goal for 2D shapes:  
A metric on curves in the plane

1.d(C1, C2) = 0         C1  is isometric to  C2          (isometry) 

2. d(C1, C2) =  d(C2, C2)                                 (symmetry) 
   
3. d(C1, C3) ≤  d(C1, C2) + d(C2, C3)     (triangle inequality)  



Why these three metric properties?

1.d(C1, C2) = 0         C1  is isometric to  C2          (isometry) 

2. d(C1, C2) =  d(C2, C2)                                 (symmetry) 
   
3. d(C1, C3) ≤  d(C1, C3) + d(C1, C3)     (triangle inequality)  

Each property plays an important role in applications.



Isometry:  d(C1, C2) = 0       C1  is isometric to  C2  

Allows for identifying different views of the same object.

We want to consider these to be the same object. 
Our distance measure should not change if one shape  
is moved by a Euclidean Isometry. 



Symmetry:  d(C1, C2) =  d(C2, C2) 

If I own the square, and you own the circle,  we can agree on the  
distance between them. 

The distance between two objects does not depend on the order  
in which we find them. 

C2 C1
C2C1



Triangle inequality: d(C1, C3) ≤  d(C1, C2) + d(C2, C3)  

This means that noise, or a small error, does not affect distance 
measurements very much.

Measurements should be stable under small errors.   

                    d(C1, C3) - d(C2, C3) ≤  d(C1, C2) 

If C1        and C2         are close, so d(C1, C2) is small, then 

the distance of C1 and C2 to a third shape C3          is about the same. 

   
  



What is a good metric on the shapes in R2? 

David Mumford examined this question. 

D.  Mumford, 1991 
Mathematical Theories of Shape: do they model 
perception?   

There are many natural candidates for metrics 
giving distances between shapes. 

We look at some of these metrics. 



Hausdorff metric
dH = Maximal distance of a point in one set  
from the other set, after a rigid motion. 

dH(A, B) =    min      {sup  d(x, B ) + sup  d(y, A)}   

BA What is the Hausdorff distance?

Add the distances of each red dot 
from the other set.

Gives a metric on {compact subsets of the plane}.

rigid motions x∈A y∈B



Drawbacks: Hausdorff metric

BA dH(A,B) = 0

BA dH(A,B) = 1

BA dH(A,B) = 1



BA dH(A,B) = 1

Drawbacks: Hausdorff metric

The alignment that minimizes 
Hausdorff distance may not give 
the correspondence we want.

Can we fix this with a different metric?



Template metric
distance = Area of non-overlap after rigid motion. 

BA dT(A,B) ≈ 0

dT(A, B) = min   {Area(A-B) + Area(B-A)}  
rigid motions

Blue area at left             +            green area at right



Drawbacks: Template metric

A B

dT(A,B) ≈ 1The area overlap is small.

BA

The area overlap is large. dT(A,B) ≈ 0



Challenge- Intrinsic geometry. 

How can we see this? 

These shapes are intrinsically close. Not picked  
up by Hausdorff or template metrics.



Gromov-Hausdorff metric

One way to see that these are close:  
Bend them in R3, and then use R3-Hausdoff metric. 
This gives the Gromov-Hausdorff metric.



Optimal transport metric
Also called the Wasserstein or Monge-Kantorovich metric.   
Distance between two shapes is the cost of moving  
one shape to the other: 

Distance = ∫ (area of subregion) x (distance moved) 
  

BA



Drawback -  Optimal Transport

Can be discontinuous 

Can be hard to compute



Optimal diffeomorphism metric
Define an energy that measures the stretching between two shapes. 

This energy defines a distance between two spaces that are  
diffeomorphic.

BA

f

dD(A, B) =        min       {E(f)}  
diffeomorphisms



Drawback: Optimal diffeomorphism

Requires diffeomorphic shapes

P
B

D
? ?



Optimal diffeomorphism but allowing some tears. 

Maps with tears

PB

Hard to compute. 

DB



Mumford Experiments
Two groups of subjects, and 15 polygons

a. Pigeons b. Harvard  
    undergraduates

Experiment Conclusion: Human and pigeon perception of shape  
similarity do not indicate an underlying mathematical metric.
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Now look at surfaces and  
shapes in R3

P1
P2

?

How similar are these two shapes?



?

How do we compare two proteins?

“Feature space”

V1=(a1,b1,…..)

V2=(a2,b2,…..)

P1

P2
€ 

d = V1−V2



Fourier Analysis of Time Signal



Harmonic Representation of Shapes

1. Surface-based shape analysis 
Spherical harmonics 

2. Volume-based shape analysis 
3D-Zernike moments



The challenge of the elephant…
Enrico Fermi once said to Freeman Dyson: 

“I remember my friend Johnny von Neumann used to say,  
with four parameters I can fit an elephant, and with five  
I can make him wiggle his trunk.”

(F. Dyson, Nature (London) 427, 297,2004)



The challenge of the elephant…

The “best” solution, so far… (Mayer et al, Am. J. Phys. 78, 648-649,2010)

€ 

x(t) = Ak
x cos(kt) + Bk

x sin(kt)( )
k=0

K

∑

€ 

y(t) = Ak
y cos(kt) + Bk

y sin(kt)( )
k=0

K

∑

k
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The challenge of the elephant…
k=1 k=2

k=3 k=5



3D: Spherical harmonics

€ 

Yl
m θ,ϕ( ) =

2l +1
4π

(l −m)!
(l +m)!

Pl
m cosθ( )eimϕ

€ 

f (θ,ϕ) = cl ,mYl
m θ,ϕ( )

m=−l

l

∑
l=0

+∞

∑

Any function f on the unit-sphere 
can be expanded into spherical harmonics:

where the basis functions are defined as:

The coefficients cl,m are computed as:

€ 

cl.m = f (θ,ϕ) Yl
m (θ,ϕ)( )0

π

∫0

2π
∫

*
sin(θ)dθdϕ



Harmonic Decomposition

= + + + + …

Constant 1st Order 2nd Order 3rd Order

3D: Spherical harmonics



What are the spherical harmonics Yl
m ?



Importance of Rotational Invariance

Shapes are unchanged 
by rotation

Shape descriptors may 
be sensitive to rotation: 
for example, the cl,m 
are not rotation invariant



Restoring Rotational Invariance

€ 

f (x) =
a1
a2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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b2
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⎥ = f (Rx)

Note that:

However:

€ 

f (x) = a1
2 + a2

2 = b1
2 + b2

2 = f (Rx)

Invariant spherical harmonics descriptors:

cl,m  for all l, m 

€ 

gl = cl ,m
2

m=−l

l
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= + + + + …
C0,0

C1,1

C1,0

C1,-1

C2,2

C2,1

C2,0

C2,-1

C2,-2

C3,2

C3,1

C3,0

C3,-1

C3,-2

C3,3

C3,-3

G0
G1

G2

G3

Invariant spherical harmonics descriptors



Some issues with Spherical Harmonics

Spherical harmonics are surface-based: 

-They require a parametrization of the surface  
 (usually triangulation) 

-They are appropriate for star-shaped objects 

-They lose content information



From Surface to Volume
● Consider a set of concentric spheres over the object 
● Compute harmonic representation of each sphere 

independently

=

=

=

+ + + +

+ + + +

+ + + +



Problem: insensitive to internal rotations



A natural extension to Spherical Harmonics: 
The 3D Zernike moments
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Surface-based Volume-based
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How does it work?



Applications



Comparing Old World Monkey Skulls 



Old World Monkey Skulls: DNA Tree 



N=5 N=10 

N=20 N=40 

Original 



Old World Monkey Skulls: Distance Tree 
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Analysis of the McGill Shape databases 
458 objects, in 10 categories 

 


