
ECS 165A Database Systems Fall 2013
Dr. Bertram Ludäscher November, 2013

Group Project: Mondial/GM (GapMinder)

Due Date: Friday, December 6 (Submission details: see class site and mailing list)

The goal of the first phase of the project was to get GapMinder datasets into Postgres. Now our focus will shift
to data quality, data integration, and other practical issues. First some terminology: The GapMinder (short:
GM) data files provide data about indicators, e.g., life expectancy (short: LE), population (POP), income
(GDP per capita), health spending, electricity use, etc. This data is given for di↵erent countries and years.
Thus, we can think of the GM data organized into multiple tables as follows:

• GM LE(country, year, LE), GM POP(country, year,POP), GM GDP(. . . ), . . . (DECOMP)

Alternatively, instead of this decomposed schema, we can think of these tables as combined into one large table:

• GMH(country, year, LE,POP,GDP,HS,EL, . . . ) (Horizontal)

Last not least, instead of the “wide, horizontal” table, we can create a “vertical” one:

• GMV(country, year, indicator, value) (Vertical)

Other structures are possible as well, e.g., GMA(country, indicator, value array), but we will focus on DECOMP,
GMH, and GMV, above. Our goal is to use these three representations and see how they compare, e.g., with
respect to extensibility, ease of query formulation, and e�ciency of query execution. Since it would be tedious
and error-prone to maintain all three variants independently, your task will be to pick one base representation

(which should be one that is easy to extend, e.g., by adding new values for existing indicators, or by adding new
indicators), and then to implement at least one other variant as a materialized view over the base relation(s).
That is, you should write triggers that automatically update the materialized view tables in response to updates
to the base relations.

Deliverable D3 (GM Base) Pick one of the above three representations, i.e., DECOMP, Horizontal, or
Vertical as your GM base, using the table names provided above. Then populate your table(s) with the GM
data given earlier on the class site. NOTE: You may have already picked one of those in the first project phase.
You can use this as D3 (and modify as needed, to adjust table names).

Deliverable D4 (GM View) Pick one of the remaining two representations and create:

(a) a (conventional) view from the GM base, or

(b) a system-level materialized view (PostgreSQL 9.3) from the GM base,

(c) a user-defined materialized view (prior PostgreSQL versions).

If you choose (b), use REFRESH MATERIALIZED VIEW to maintain the view as the base tables change. If you
use (c), then updates to your GM base should be automatically propagated via triggers to your GM view. In
particular, inserts into the GM base should automatically trigger inserts into your GM view. In the README.txt
file that goes with your submission, explain how your solution works.

Deliverable D4-EC (GM View, Extra Credit)

Pick the remaining third representation and solve D4 (GM View/Materialized View) with it.

Deliverable D5 (Exploring GM Countries) GM data is often (and inherently) incomplete, e.g., because
the corresponding indicators are not available for a given country and year. To explore what GM countries are
there, formulate the following as SQL queries:

Bertram Ludaescher


Bertram Ludaescher


Bertram Ludaescher




1. How many distinct GM countries are present in the given GM files?

2. For each indicator, how many GM countries have data for that indicator?

3. What are the countries that have at least some (non-NULL) data for all the indicators?

4. How many (non-NULL) data points are there per year (i.e., across all GM countries)?

Deliverable D6 (Mondial++: Mondial + GM Integration)Mondial uses country codes to uniquely identify
a country, along with the country names, where GM uses only country names. Data integration challenges arise,
e.g., due to possible di↵erent spellings between Mondial and GM country names, as well as the transient or
evolving nature of countries (USSR, Germany, Korea, etc.), their o�cial names, etc.

Create and populate a “bridge table” that associates Mondial country codes with GM country names. Take into
account the GM documentation1 and think what additional columns you might need to describe an association
between a Mondial code and a GM country name. For example, you could have a comment field, explaining
possible “issues” with the association, or you could have one or more columns describing in what years this
association is valid, etc. As part of this deliverable, document:

1. how you populated the table, and

2. what “problem cases” you have detected and how you are dealing with them.

For example, you can populate the bridge table directly using Postgres and/or use manual or script-based means
to deal with problem cases. In addition you might want to try out Google-Refine2 which can be a good way
to deal with spelling and other data cleaning issues. If you choose to use Google-Refine, mention it in your
README.txt documentation.

Deliverable D7 (Mondial + GM Queries) Implement the following queries in PostgreSQL:

1. For each (Mondial++) country return the minimal, maximal, and average latitude of all cities in that
country. The result should be ordered by continent (first) and country (second).

2. Extend the previous query to also return the Life Expectancy, Income, and Electricity for each country
in the year 2000.

3. For each continent, compute the average income (GDP/capita) in the year 2000 ...

(a) ... by simply averaging over the country income data in the year 2000 (unweighted average), and

(b) ... by taking into account the population of the country (weighted average).

Deliverable D8-EC (EXTRA CREDIT: Skyline Queries) In the following, your task is to compute the
names of countries which are in the skyline of a certain query. Here, a skyline is defined by giving two attributes
(e.g. Life Expectancy and Health Spending) and indicating for each whether the min or max is used. Details
and examples of expressing skyline queries in SQL will be given in class or during discussion sections.

(a) Compute the country skyline for (Life Expectancy MAX, Health Spending MAX) for the year 2000.

(b) Same as (a) but for (Life Expectancy MAX, Health Spending MIN).

Deliverable D9-EC (EXTRA CREDIT: MyGapMinder) In a visualization tool of your choosing, display
the XY-plot for all years and all (or some) countries ...

(a) ... where X is the Year and Y is the Life Expectancy, and

(b) ... where X is the Health Spending and Y is the Life Expectancy

For simplicity, you can “loosely-couple” Postgres with your visualization tool, by exporting the answers of your
SQL queries to a file.

1
http://www.gapminder.org/data/countries-territories-in-gapminder-world/

2
http://code.google.com/p/google-refine/

Bertram Ludaescher


http://www.gapminder.org/data/countries-territories-in-gapminder-world/
http://code.google.com/p/google-refine/

