ECS 165A Database Systems Discussion Session 3

The Relational Algebra (Chap. 6)

Outline

- Review Homework1 Solutions
- Review the Relational Algebra
- Examples

• A country has a number of attributes, including a

- A country has a number of attributes, including a name, (land) area, population, and GDP. A country has also a capital city, which itself has a name, population, and geographical coordinates (latitude, longitude). With each country there are also a number of spoken languages and predominant religions associated.
- Countries are located on continents, the latter having a name and area. Any two countries may have a border between them of a particular length.
- A city can be part of country, and can also be situated on an island, or at a lake, river, or sea. A lake has a name, area, maximal depth, and altitude; a river has a name, length, and can flow in or out of a lake, or into a sea; a sea has a name, (maximal) depth, and may be connected with another sea. An island has a name, area, and be ³

Constraints that cannot be expressed in ER Model

• The population of a country should be greater than or equal to the sum of the populations of the cities in that country.

 The area of a country should be less than or equal to the land it is located on (continent(s) and island(s)).

• The capital city of a country is part of that same country.

And, ...

Relations

- COUNTRY(name, area, population, GDP, capital_city_name → CITY)
- CITY(name, population, latitude, longitude, country_name \rightarrow COUNTRY)
- country_speaks_language(cname \rightarrow COUNTRY, lname \rightarrow LANGUAGE)
- country_has_religion(cname \rightarrow COUNTRY, rname \rightarrow RELIGION)
- LANGUAGE(name)
- RELIGION(name)
- country_locatated_on_continent(country_name → COUNTRY, continent_name → CONTINENT)
- CONTINENT(name, area)
- country_borders_country(cname_a \rightarrow COUNTRY, cname_b \rightarrow COUNTRY, length)

Relations (cont'd.)

- city situated_on_island(cname \rightarrow CITY, iname \rightarrow ISLAND)
- city_situated_at_lake(cname \rightarrow CITY, lname \rightarrow LAKE)
- city_situated_at_river(cname \rightarrow CITY, rname \rightarrow RIVER)
- city_situated_at_sea(cname \rightarrow CITY, sname \rightarrow SEA)
- LAKE(name, area, depth, altitude)
- RIVER(name, length)
- river_flows_into_lake(rname → RIVER, Iname → LAKE)
- river_flows_out_of_lake(rname → RIVER, Iname → LAKE)
- river_flows_into_sea(rname → RIVER, sname → SEA)
- SEA(name, depth)
- sea_connected_with_sea(sea_name_a → SEA, sea_name_b → SEA)
- ISLAND(name, area)
- island_part_of_country(iname → ISLAND, cname → COUNTRY)

Relations (cont'd.)

- The relationships <u>country has capital</u> <u>city</u> and <u>city part of country</u> do not need tables, since
 - we assumed that a country can have only one capital (which is actually not true in the real world) and that a city is a part of only one country.
- Therefore, we can just place foreign keys in the COUNTRY and CITY tables, respectively, as shown in the above relational schema.

9

Changing Attributes

- A country's population and GDP.
- A city's population.
- A lake's area and depth.
- A river's length.
- A sea's depth.
- ,

Changing Attributes Example: GDP

- Remove the GDP attribute from Country. Add a TIME entity with a primary key of t. Add a relationship between TIME and Country called country gdp at time with an attribute named GDP.
- The relational schema changes and additions would be:
- COUNTRY(name, area, population, capital_city_name → CITY)
- TIME(t)
- country gdp_at_time(cname \rightarrow COUNTRY, t \rightarrow TIME, GDP)

Relation Instance

- The current values (*relation instance*) of a relation are specified by a table.
- An element *t* of *R* is a *tuple*, attributes represented by a *row* in a table (or columns)

					_
customer_name	<u>customer</u>	_street	customer	_city	
Jones	Main		Harrison		
Smith	North		Rye		tunles
Curry	North		Rye		(or rows)
Lindsay	Park		Pittsfield		

What is "algebra"

- Mathematical model consisting of:
 - Operands --- Variables or values;
 - Operators --- Symbols denoting procedures that construct new values from a given values
- Relational Algebra is algebra whose operands are relations and operators are designed to do the most commons things that we need to do with relations.

Unary Relational Operations: SELECT

- The SELECT Operation
 - Subset of the tuples from a relation that satisfies a selection condition:

 $\sigma_{\langle \text{selection condition} \rangle}(R)$

Unary Relational Operations: SELECT (cont'd.)

• Example:

 $\sigma_{(\mathsf{Dno}=4 \text{ AND Salary}>25000) \text{ OR } (\mathsf{Dno}=5 \text{ AND Salary}>30000)}(\mathsf{EMPLOYEE})}$

- <selection condition> applied independently to each individual tuple t in R
 - If condition evaluates to TRUE, tuple selected
- Boolean conditions AND, OR, and NOT

SELECT Operation: Example

Relation R

$$\sigma_{A=B^{A}D>5}(R)$$

The PROJECT Operation

• Selects columns from table and discards the other columns: $\pi_{< attribute list>}(R)$

• Degree

– Number of attributes in <attribute list>

Duplicate elimination

 Result of PROJECT operation is a set of distinct tuples

The PROJECT Operation (cont'd.)

- account (branch-name, account-number, balance)
- E.g. to eliminate the branch-name attribute of account $\Pi_{account-number, \ balance}$ (account)
- If relation Account contains 50 tuples, how many tuples are in $\prod_{account-number, balance}$ (account)?
- If relation Account contains 50 tuples, how many tuples are in ∏_{balance} (account) ?

Sequences of Operations

• In-line expression:

 $\pi_{\text{Fname, Lname, Salary}}(\sigma_{\text{Dno}=5}(\text{EMPLOYEE}))$

• Sequence of operations:

 $\begin{array}{l} \mathsf{DEP5_EMPS} \leftarrow \sigma_{\mathsf{Dno=5}}(\mathsf{EMPLOYEE}) \\ \mathsf{RESULT} \leftarrow \pi_{\mathsf{Fname, \ Lname, \ Salary}}(\mathsf{DEP5_EMPS}) \end{array}$

Relational Algebra Operations from Set Theory • UNION, INTERSECTION, and MINUS

- Merge the elements of two sets in various ways
- Binary operations
- Relations must have the same type of tuples
- UNION
 - $-R \cup S$
 - Includes all tuples that are either in R or in S or in both R and S
 - Duplicate tuples eliminated

UNION Operation: Example

Relational Algebra Operations from Set Theory (cont'd.)

- SET DIFFERENCE (or MINUS)
 - -R-S
 - Includes all tuples that are in R but not in S

Set Difference Operation – Example

S

R – S:

The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

CARTESIAN PRODUCT – CROSS PRODUCT or CROSS JOIN

- Denoted by \times
- Binary set operation

RENAME Operation Allows us to name, and therefore to refer to, the results of relational-algebra

- expressions.
- Allows us to refer to a relation by more than one name.

Example:

$$\rho_{X}(E)$$

returns the expression E under the name X.

If a relational-algebra expression *E* has arity *n*, then

$$ho_{(A1, A2, ..., An)}$$
 (E)

returns the result of expression *E* under the name *X*, and with the attributes renamed to *A1*, *A2*,, *An*.

INTERSECTION Operation

- Notation: $R \cap S$
- Defined as:
- $R \cap S = \{ t \mid t \in R \text{ and } t \in S \}$
- Assume:
 - R, S have the same arity
 attributes of R and S are compatible
- Note:
- $R \cap S = R (R S)$
- $R \cap S = ((R \cup S) (R S)) (S R)$

INTERSECTION Operation: Example

- Relation R, $A B \\ \alpha 1 \\ \alpha 2 \\ \beta 1 \\ \beta 1 \\ S$
- $R \cap S$

Binary Relational Operations: JOIN and DIVISION

- The JOIN Operation
 - Denoted b 🖂
 - Combine related tuples from two relations into single "longer" tuples
 - General join condition of the form <condition> AND <condition> AND...AND <condition>
 - DEPT_MGR \leftarrow DEPARTMENT $\bowtie_{Mgr_ssn=Ssn}$ EMPLOYEE RESULT $\leftarrow \pi_{Dname, Lname, Fname}$ (DEPT_MGR)

NATURAL JOIN: Example

• Relations R, S:

Natural Join: Example

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

S1

R1 ▷ S1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Binary Relational Operations: JOIN (cont'd.)

- THETA JOIN
 - Each <condition> of the form $A_i \theta B_j$
 - $-A_i$ is an attribute of R
 - $-B_{j}$ is an attribute of S
 - $-A_i$ and B_j have the same domain
 - $-\theta$ (theta) is one of the comparison operators:
 - $\{=, <, \leq, >, \geq, \neq\}$

"THETA JOIN: Example

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

sid	sname	rating	age
 22	dustin	7	45.0
22 31	lubber	, 8	55 5
58	rusty	10	35.0

R1

S1

 $S1 \bowtie_{S1.sid \leq R1.sid} R1 =$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

A Complete Set of Relational Algebra Operations

- Set of relational algebra operations
 {σ, π, υ, ρ, -, ×} is a complete set
 - Any relational algebra operation can be expressed as a sequence of operations from this set

The DIVISION Operation

- Denoted by ÷
- Example: retrieve the names of employees who work on all the projects that 'John Smith' works on
- Apply to relations $R(Z) \div S(X)$

Attributes of *R* are a subset of the attributes of *S*

Division: Example

Another Division Example

Relations *R, S*:

Aggregate Functions and Operations • Aggregation function takes a collection of values and returns a single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

• Aggregate operation in relational algebra

G1, G2, ..., Gn $g_{F1(A1), F2(A2),..., Fn(An)}$ (E)

- *E* is any relational-algebra expression
- $-G_1, G_2 \dots, G_n$ is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A_i is an attribute name

Aggregate Operation: Example

Relation R:

 $g_{sum(c)}(R)$

Aggregate Operation: Example

 Relation *account* grouped by branch-name:

branch-name	account-number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch-name $g_{sum(balance)}(account)$

branch-name	balance
Perryridge	1300
Brighton	1500
Redwood	700

OUTER JOIN Operations

- Outer joins
 - Keep all tuples in *R*, or all those in *S*, or all those in both relations regardless of whether or not they have matching tuples in the other relation
 - -Types
 - LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN
 - $Example \mathsf{TEMP} \gets (\mathsf{EMPLOYEE} \Join_{\mathsf{Ssn} = \mathsf{Mgr}_\mathsf{ssn}} \mathsf{DEPARTMENT})$

 $\mathsf{RESULT} \leftarrow \pi_{\mathsf{Fname, Minit, Lname, Dname}}(\mathsf{TEMP})$

The OUTER UNION Operation

- Take union of tuples from two relations that have some common attributes
 - All tuples from both relations included in the result
 - But tuples with the same value combination will appear only once

Outer Join – Example

Relation *loan*

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

Relation *borrower*

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

Left Outer Join

• Join

loan Borrower

loan-number branch-name amount customer-name

L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

Left Outer Join

Ioan Borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	NULL

Right Outer Join, Full Outer Right Outer Join

loan-number | branch-name | amount | customer-name

L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	NULL	NULL	Hayes

Full Outer Join

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	NULL
L-155	NULL	NULL	Hayes

EXAMPLE

- Consider the following tables:
- •B(<u>bid</u>, bname, color)
- •R (<u>sid</u>, <u>bid</u>, <u>day</u>)
- •S(<u>sid</u>, sname, rating, age)

B(<u>bid</u>, bname, color)
 R(<u>sid</u>, <u>bid</u>, <u>day</u>)

S(<u>sid</u>, sname, rating, age)

Find the names of sailors who've reserved a red or a green boat.

 $\pi_{sname}(\sigma_{color='red' \lor color='green'}^{(B) \bowtie R \bowtie S)}$

Find the names of sailors who've reserved a red and a green boat.

 $\rho_{T1(sid)}^{(\pi_{sid}(\sigma_{color}='red'^{(B)\bowtie R)})}$ $\rho_{T2(sid)}^{(\pi_{sid}(\sigma_{color}='green'^{(B)\bowtie R)})}$ $\pi_{sname}((T1 \cap T2) \bowtie S)$

B(<u>bid</u>, bname, color) R(<u>sid</u>, <u>bid</u>, <u>day</u>) S(sid, sname, rating, age) Find the names of sailors who've reserved boat #103. $\pi_{sname}(\sigma_{hid=103 \land R,sid=S,sid}(R \times S))$ $\pi_{sname}(\sigma_{hid=103}(R) \bowtie S)$ $\pi_{sname}(\sigma_{bid=103}(R \bowtie S))$ Find the names of sailors who've reserved a red boat. $\pi_{sname}(\sigma_{color='red'}(B) \bowtie R \bowtie S)$

B(<u>bid</u>, bname, color)

➢ R(<u>sid</u>, <u>bid</u>, <u>day</u>)

S(<u>sid</u>, sname, rating, age)

Find the names of sailors who've reserved at least two boats.

 $\rho_{R1(sid1,bid1,day1)}^{(R)} \\ \rho_{R2(sid2,bid2,day2)}^{(R)} \\ \pi_{sname}^{(\sigma_{(sid1=sid2)\wedge(bid1\neq bid2)}^{(R1\times R2\times S))}}$

Find the names of sailors who've reserved all boats.

 $\pi_{sname}^{((\pi_{sid},bid}^{(R\bowtie S)\div\pi_{bid}^{(B)}\bowtie S)}$ $\pi_{sname}^{(\pi_{sid},sname,bid}^{(R\bowtie S)\div\pi_{bid}^{(B)}(B))}$

References

 Chapter 6 Slides, Fundamental of Database Systems, 6e, Elamasri and Navathe,

• Slides from Database Management Systems, Ramakishnan and Gehrke.