QUERY LANGUAGES FOR RELATIONAL DATABASES 1

e SQL SELECT ... FROM ... WHERE ...
e Relational Algebra (RA) o,m, X, 8,U,\
e Relational Calculus (RC) VeF, dzF, FAG, FVG,- F
e Datalog ~ RC + Recursion

e

EXAMPLE: Given relations| employee (Emp, Salary, DeptNo) |and| dept(DeptNo, Mgr) |

find all (employee, manager) pairs:

e SQL: SELECT Emp, Mgr
FROM employee, dept
WHERE employee.DeptNo = dept.DeptNo
® RA: mEpp,Mgr(employee X dept)
e RC: F(Emp,Mgr) =
JSalary, DeptNo : (employee(Emp, Salary, DeptNo)Adept(DeptNo,Mgr))
e Datalog: boss(Emp,Mgr) < employee(Emp, Salary, DeptNo), dept(DeptNo,Mgr)

DATALOG SYNTAX 2

e A relational database is given as a set of facts:

employee(john, 40000, toys).
employee (mary, 65000, cs).

dept (cs, mary).

e A Datalog program defines views by means of rules of the form Head < Body:
boss(Emp,Mgr) <— employee(Emp, Salary, DeptNo), dept(DeptNo,Mgr)
highpaid (Emp) <— employee(Emp, Salary, _), Salary > 60000

e EDB: extensionally defined relations (facts): employee/3, dept/2

e IDB: intensionally (i.e., rule-) defined relations (views): boss/2

e A query is a view with a distinguished answer/n relation:
answer (Emp,Mgr) < employee(Emp, Salary, DeptNo), dept(DeptNo,Mgr)

Notation:

e lowercase: relation names (employee/3, highpaid/1, ...) and constants (aka data
values: john, toys, 50000, ...)

e UPPERCASE/Capitalized: variables (Emp, X, ...) (“~" means: don't care)

DATALOG: Examples for Relational Operations 3

Relational operations have concise representations! Examples:

sel(X,Y) :- p(X,Y), X=a, not X=Y. % SELECT some tuples from p(X,Y)

proj(X) :- p(X,Y). % PROJECT on the first argument
join(X,Y,Z) :- p(X,Y), q(¥,2). % JOIN p(A,B), q(C,D) s.t. B=C
prod(X,Y) :- p(X), q(¥). % PRODUCT of p(X) and q(Y)
intersect(X) :- p(X), q(X). % INTERSECTION of p(X), q(X)
diff(X) :- p(X), not q(X). % SET-DIFFERENCE: p(X) \ q(X)
union(X) :- p(X). % UNION of p(X),

union(X) :- q(X). % ... and q(X)

Rules have a “logical reading” (i.e., rules are formulas):

VX (diff(X) « p(X)A—=q(X)).
VX (union(X) <+ p(X)Va(X)).

DATALOG: FIXPOINT SEMANTICS 4

Relations can be defined (directly or indirectly) in terms of themselves (= recursive
relations/rules):

e(a,b). e(b,c). ... % FACTS (EDB-relation: e/2)

tc(X,Y) :- e(X,Y). % RULES (IDB-relation: tc/2)
tcX,Y) :- e(X,2), tc(Z,Y).

e Bottom-Up Evaluation (Fixpoint Semantics): Apply rules iteratively (in so-called Tp-
rounds) until a fixpoint is reached (P := Facts U Rules):

IO = @
I, :=1,U Tp(I,)

The sequence Iy C I; C I . .. converges' to the least fixpoint | fp(Tp) of Tp
Tp (Immediate Consequences) operator:

Tp(I) := {oc(Head) | (Head < Body) € P, I |= oc(Body)}

1proviso: P positive

EXAMPE: Transitive Closure 5

e(a,b). e(b,c). e(c,d). % FACTS (EDB-relation: e/2)

tc(X,Y) :- e(X,Y). % RULES (IDB-relation: tc/2)
tc(X,Y) :- e(X,2), tc(Z,Y).

I,

0

{e(a,b),e(b,c),e(c,d)}

{e(a,b), e(b, c),e(c,d)} U {tc(a, b), tc(b, c), tc(c,d)}

{e(a,b), e(b, c), e(c, d)} U {tc(a, b), tc(b,), te(c, d), te(a,), te(b, d), te(a, d) }

AW~ oS

= if the longest path in e/2 has length n, then O(n) rounds are needed!

(Exercise: how about the following rule? tc(X,Y) < tc(X,Z), tc(Z,Y).)

