
ECS-165A 123

7. Indexing

Contents:

• Single-Level Ordered Indexes

• Multi-Level Indexes

• B+ Tree based Indexes

• Index Definition in SQL

Basic Concepts

• Indexing mechanisms are used to optimize certain accesses
to data (records) managed in files. For example, the author
catalog in a library is a type of index.

• Search Key (definition): attribute or combination of attributes
used to look up records in a file.

• An Index File consists of records (called index entries) of the
form

search key value pointer to block in data file

• Index files are typically much smaller than the original file
because only the values for search key and pointer are stored.

• There are two basic types of indexes:

– Ordered indexes: Search keys are stored in a sorted order
(main focus here in class).

– Hash indexes: Search keys are distributed uniformly across
“buckets” using a hash function.

7. Indexes

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 124

Index Evaluation Criteria

Indexing techniques are evaluated on the basis of:

• Access types that are e�ciently supported; for example,

– search for records with specified values for an attribute
(select ⇤ from EMP where EmpNo = 4711;)

– search for records with an attribute value in a specified
range
(select ⇤ from EMP where DeptNo between 20 and 50;)

• Access time (index entry ! record)

• Insertion time (record ! index entry)

• Deletion time (record ! index entry)

• Space and time overhead (for maintaining index)

7. Indexes

ECS-165A 125

Types of Single Level Ordered Indexes

• In an ordered index file, index entries are stored sorted by the
search key value.

– most versatile kind of index: supports lookup by search key
value or by range of search key values

• Primary Index: in a sequentially ordered file (e.g., for a
relation), the index whose search key specifies the sequential
order of the file. For a relation, there can be at most one
primary index. (; index-sequential file)

• Secondary Index: an index whose search key is di↵erent from
the sequential order of the file (i.e., records in the file are not
ordered according to secondary index).

• If search key does not correspond to primary key (of a
relation), then multiple records can have the same search key
value

• Dense Index Files: index entry appears for every search key
value in the record file.

• Sparse Index Files: only index entries for some search key
values are recorded.

– To locate a record with search key value K, first find index
entry with largest search key value < K, then search file
sequentially starting at the record the index entry points to

– Less space and maintenance overhead for insertions and
deletions

– Generally slower than dense index for directly locating
records

7. Indexes

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 126

Secondary Indexes

• Often one wants to find all records whose values in a certain
field (which is not the search key of the primary index) satisfy
some condition

– Example 1: In the EMPLOYEE database, records are
stored sequentially by EmpNo, we want to find employees
working in a particular department.

– Example 2: as above, but we want to find all employees
with a specified salary or range of salary

• One can specify a secondary index with an index entry for
each search key value; index entry points to a bucket, which
contains pointers to all the actual records with that particular
search key.

Primary Indexes vs. Secondary Indexes

• Secondary indexes have to be dense

• Indexes o↵er substantial benefits when searching for records

• When a record file is modified (e.g., a relation), every index
on that file must be updated. Updating indexes imposes
overhead on database performance.

• Sequential scan using primary index is e�cient, but a
sequential scan using a secondary index is expensive (each
record access may fetch a new block from disk)

7. Indexes

ludaesch
Pencil

ludaesch
Pencil

ludaesch
Pencil

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 127

Multi-Level Index

• If primary index does not fit in memory, access to records
becomes expensive

• To reduce number of disk accesses to index entries, treat
primary index on disk as sequential file and construct a sparse
index on it.
– outer index ! a sparse index of primary index
– inner index ! the primary index file

• Multilevel Index structure

outer index

inner index

Data
block 0

Data
block 1

Index
block 0

Index
block 1

record file

• If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

• Note that indexes at all levels must be updated on insertions
or deletions of records from a file.

7. Indexes

ECS-165A 128

Dynamic Multi-Level Indexes using B+-Trees

B+-Tree indexes are an alternative to index sequential files.

• Disadvantage of index-sequential files: performance degrades
as sequential file grows, because many overflow blocks are
created. Periodic reorganization of entire file is required.

• Advantage of B+-Tree index file: automatically reorganizes
itself with small, local changes in the case of insertions and
deletions. Reorganization of entire file is not required to
maintain performance.

• Disadvantage of B+-Trees: extra insertions and deletion
overhead, space overhead.

• Advantages of B+-Trees outweigh disadvantages, and B+-
Trees are used extensively in all DBMS.

7. Indexes

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 129

A B+-Tree is a rooted tree satisfying the following properties:

• All paths from the root to leaf have the same length
(=) a B+ tree is a balanced tree).

• Each node that is not the root or a leaf node has between
dn/2e and n children (where n is fixed for a particular tree).

• A leaf node has between d(n� 1)/2e and n� 1 values.

• Special case: if the root is not a leaf, it has at least 2 children.
If the root is a leaf, it can have between 0 and n� 1 values.

• Typical structure of a node:

P

1

K

1

P

2

. . . P

n�1

K

n�1

P

n

– K

i

are the search key values
– P

i

are pointers to children (for non-leaf nodes) or pointers
to records or buckets of records (for leaf nodes)

• The search keys in a node are ordered, i.e,

K

1

< K

2

< K

3

. . . < K

n�1

7. Indexes

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 130

Example of a B+-Tree

2 TID TID S55 n TID TID S60 2 TID TID....... TIDS51

PnPnPnPn

S25 S70

S8 S13 S20 S33 S45 S61 S75 S86 S99

L Lji

Leaf Nodes in a B+-Tree

• For i = 1, 2, . . . , n � 1, pointer P

i

either points to a file
record with search key value K

i

(using the tuple identifier,
tid), or to a bucket of pointers to file records, each record
having search key value K

i

.

Note that one only needs bucket structure if search key
does not correspond to primary key of relation the index is
associated with.

• If L

i

, L

j

are leaf nodes and i < j, L

i

’s search key values are
less than L

j

’s search key values.

• P

n

points to next leaf node in search key order.

7. Indexes

ECS-165A 131

Non-Leaf Nodes in a B+-Tree

• All the search keys in the subtree to which P

1

points are less
than K

1

; all search keys in the subtree to which P

m

points
are greater than or equal to K

m�1

.

Observations about B+-Trees

• Since the inter-node connections are done by pointers, there
is no assumption that in the B+-Tree logically close blocks
are also “physically” close.

• The non-leaf levels of the B+-Tree form a hierarchy of sparse
indices.

• The B+-Tree contains a relatively small number of levels
(logarithmic in size of the main file), thus searches can be
done e�ciently.

• Insertions and deletions to the main file can be handled
e�ciently, as the index can be restructured in logarithmic
time. (+ ECS 110)

7. Indexes

ludaesch
Cross-Out

ludaesch
Pencil

ECS-165A 132

Queries on B+-Trees

Find all records with a search key value of k

• Start with the root node

– Examine the node for the smallest search key value > k.

– If such a value exists, assume it is K

i

. Then follow P

i

to
the child node.

– Otherwise, k � K

m�1

, where are m pointers in the node.
Then follow P

m

to the child node.

• If the node is reached by following the pointer above is not
a leaf node, repeat the above procedure on the node, and
follow the corresponding pointer.

• Eventually reach a leaf node. Scan entries K

i

in the leaf
node. If K

i

= k, follow pointer P

i

to the desired record or
bucket. Otherwise no record with search key value k exists.

• Further comments:

– If there are V search key values in the file, the path from
the root to a leaf node is no longer than dlogdn/2e(V)e.

– In general a node has the same size as a disk block,
typically 4KB, and n ⇡ 100 (40 bytes per index entry).

– With 1, 000, 000 search key values and n = 100, at
most log

50

(1, 000, 000) = 4 nodes are accessed in the
lookup!

7. Indexes

ECS-165A 133

B+-Tree File Organization

• Index file degradation problem is solved by using B+-Tree
indices. Data file degradation problem is solved by using a
B+-Tree file organization.

• Leaf nodes in a B+-Tree file organization can store records
instead of just pointers.

Clustered vs. Unclustered Indices

Clustered: Order of data records is the same as order of index
entries.

Data records
(blocks)

Data records
(blocks)

Clustered Tree Index

Unclustered Tree Index

............

............ Leaf nodes

Leaf nodes

7. Indexes

ECS-165A 134

Index Definition in PostgreSQL

• Indexes are not part of SQL standard, but nearly all DBMS’s
support them via a syntax like the one below.

• PostgreSQL syntax:

create [unique] index <index name> on <relation name>
(<list of attributes>);

drop index <index name>;

• Many more options available, including clauses to specify
sort order, partial indexes, fill factor, tablespace, concurrent
construction, index method, . . .

• By default, indexes are created in ascending order.

• With primary key in a relation, an index is associated.

7. Indexes

ECS-165A 135

• Information about indexes is stored in the system catalogs.
Relevant tables are pg index and pg class.

The system catalog table pg index:

Column Description
indexrelid The OID of the pg class entry for

this index
indrelid The OID of the pg class entry for

the table this index is for
indnatts The number of columns in the index

(duplicates pg class.relnatts)
indisunique If true, this is a unique index
indisprimary If true, this index represents the

primary key of the table
. . .

• Example:

create index city name idx on CITY(name);

7. Indexes

