
ECS-165A 164

9. Transaction Processing Concepts

Goals: Understand the basic properties of a transaction and
learn the concepts underlying transaction processing as well as
the concurrent executions of transactions.

A transaction is a unit of a program execution that accesses and
possibly modifies various data objects (tuples, relations).

DBMS has to maintain the following properties of transactions:

• Atomicity: A transaction is an atomic unit of processing, and
it either has to be performed in its entirety or not at all.

• Consistency: A successful execution of a transaction must take
a consistent database state to a (new) consistent database
state. (; integrity constraints)

• Isolation: A transaction must not make its modifications
visible to other transactions until it is committed, i.e.,
each transaction is unaware of other transactions executing
concurrently in the system. (; concurrency control)

• Durability: Once a transaction has committed its changes,
these changes must never get lost due to subsequent (system)
failures. (; recovery)

9. Transaction Processing Concepts

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight



ECS-165A 165

Model used for representing database modifications of a
transaction:

• read(A,x): assign value of database object A to variable x;

• write(x,A): write value of variable x to database object A

Example of a Transaction T

read(A,x)
x := x - 200
write(x,A) Transaction Schedule reflects
read(B,y) chronological order of operations
y := y + 100
write(y,B)

Main focus here: Maintaining isolation in the presence of
multiple, concurrent user transactions

Goal: “Synchronization” of transactions; allowing concurrency
(instead of insisting on a strict serial transaction execution,
i.e., process complete T

1

, then T

2

, then T

3

etc.)

; increase the throughput of the system,
; minimize response time for each transaction

Problems that can occur for certain transaction schedules without
appropriate concurrency control mechanisms:

9. Transaction Processing Concepts

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight



ECS-165A 166

Lost Update

Time Transaction T

1

Transaction T

2

1 read(A,x)
2 x:=x+200
3 read(A,y)
4 y:=y+100
5 write(x,A)
6 write(y,A)
7 commit
8 commit

The update performed by T

1

gets lost; possible solution: T

1

locks/unlocks database object A
=) T

2

cannot read A while A is modified by T

1

Dirty Read

Time Transaction T

1

Transaction T

2

1 read(A,x)
2 x:=x+100
3 write(x,A)
4 read(A,y)
5 write(y,B)
6 rollback

T

1

modifies db object, and then the transactionT

1

fails for some
reason. Meanwhile the modified db object, however, has been
accessed by another transaction T

2

. Thus T

2

has read data that
“never existed”.

9. Transaction Processing Concepts



ECS-165A 167

Inconsistent Analysis (Incorrect Summary Problem)

Time Transaction T

1

Transaction T

2

1 read(A,y1)
2 read(A,x1)
3 x1 := x1 - 100
4 write(x1, A)
5 read(C,x2)
6 x2 := x2+x1
7 write(x2,C)
8 commit
9 read(B,y2)
10 read(C,y3)
11 sum := y1 + y2 + y3
12 commit

In this schedule, the total computed by T

1

is wrong (o↵ by 100).
=) T

1

must lock/unlock several db objects

9. Transaction Processing Concepts



ECS-165A 168

Serializability

DBMS must control concurrent execution of transactions to
ensure read consistency, i.e., to avoid dirty reads etc.

; A (possibly concurrent) schedule S is serializable if it is
equivalent to a serial schedule S

0, i.e., S has the same
result database state as S

0.

How to ensure serializability of concurrent transactions?

Conflicts between operations of two transactions:

T

i

T

j

read(A,x)
read(A,y)

T

i

T

j

read(A,x)
write(y,A)

(order does not matter) (order matters)

T

i

T

j

write(x,A)
read(A,y)

T

i

T

j

write(x,A)
write(y,A)

(order matters) (order matters)

A schedule S is serializable with regard to the above conflicts
i↵ S can be transformed into a serial schedule S’ by a series of
swaps of non-conflicting operations.

9. Transaction Processing Concepts

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight



ECS-165A 169

Checks for serializability are based on precedence graph that
describes dependencies among concurrent transactions; if the
graph has no cycle, then the transactions are serializable.

; they can be executed concurrently without a↵ecting each
others transaction result.

Concurrency Control: Lock-Based Protocols

• One way to ensure serializability is to require that accesses to
data objects must be done in a mutually exclusive manner.

• Allow transaction to access data object only if it is currently
holding a lock on that object.

• Serializability can be guaranteed using locks in a certain
fashion
=) Tests for serializability are redundant !

Types of locks that can be used in a transaction T:

• slock(X): shared-lock (read-lock); no other transaction than
T can write data object X, but they can read X

• xlock(X): exclusive-lock; T can read/write data object X; no
other transaction can read/write X, and

• unlock(X): unlock data object X

9. Transaction Processing Concepts

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight



ECS-165A 170

Lock-Compatibility Matrix:

requested existing lock
lock slock xlock

slock OK No
xlock No No

E.g., xlock(A) has to wait until all slock(A) have been released.

Using locks in a transaction (lock requirements, LR):

• before each read(X) there is either a xlock(X) or a slock(X)
and no unlock(X) in between

• before each write(X) there is a xlock(X) and no unlock(X)
in between

• a slock(X) can be tightened using a xlock(X)

• after a xlock(X) or a slock(X) sometime an unlock(X) must
occur

But: “Simply setting locks/unlocks is not su�cient”

replace each read(X) ! slock(X); read(X); unlock(X), and

write(X) ! xlock(X); write(X); unlock(X)

9. Transaction Processing Concepts

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight



ECS-165A 171

Two-Phase Locking Protocol (TPLP)

A transaction T satisfies the TPLP i↵

• after the first unlock(X) no locks xlock(X) or slock(X) occur

• That is, first T obtains locks, but may not release any lock
(growing phase)
and then T may release locks, but may not obtain new locks
(shrinking phase)

Strict Two-Phase Locking Protocol:

All unlocks at the end of the transaction T =) no dirty reads
are possible, i.e., no other transaction can write the (modified)
data objects in case of a rollback of T.

Concurrency Control in PostgreSQL

In PostgreSQL (or Oracle) the user can specify the following
locks on relations and tuples using the command

lock table in <mode> mode;

mode =̂ tuple level relation level
row share =̂ slock intended slock
row exclusive =̂ xlock intended xlock
share =̂ — slock
share row exclusive =̂ — sixlock
exclusive =̂ — xlock

9. Transaction Processing Concepts

ludaesch
Highlight

ludaesch
Highlight



ECS-165A 172

The following locks are performed automatically by the scheduler:

select ! no lock
insert/update/delete ! xlock /row exclusive
select . . . for update ! slock /row share
commit ! releases all locks

PostgreSQL (and Oracle) furthermore provide isolation levels that
can be specified before a transaction by using the command

set transaction isolation level <level>;

• read committed (default): each query executed by a
transaction sees the data that was committed before the
query (not the transaction!)

(; statement level read consistency)

T

1

T

2

select A from R
! old value

update R set A = new
select A from R
! old value

commit
select A from R
! new value

Non-repeatable reads (same select statement in TA gives
di↵erent results at di↵erent times) possible; dirty-reads are
not possible

9. Transaction Processing Concepts



ECS-165A 173

• serializable: serializable TAs see only those changes that were
committed at the time the TA began, plus own changes.

PostgreSQL generates an error when such a transaction tries
to update or delete data modified by a transaction that
commits after the serializable transaction began.

T

1

T

2

set transaction isolation
level serializable

set transaction . . .
update R set A = new
where B = 1
commit

update R set A = new
where B = 1
! ERROR

Dirty-reads and non-repeatable reads are not possible.
Furthermore, this mode guarantees serializability (but does
not provide much parallelism).

9. Transaction Processing Concepts


