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DEFINITION

A scientific workflow is the description of a process for accomplishing a scientific objective, usually
expressed in terms of tasks and their dependencies. Typically, scientific workflow tasks are com-
putational steps for scientific simulations or data analysis steps. Common elements or stages in
scientific workflows are acquisition, integration, reduction, visualization, and publication (e.g., in a
shared database) of scientific data. The tasks of a scientific workflow are organized (at design time)
and orchestrated (at runtime) according to dataflow and possibly other dependencies as specified by
the workflow designer. Workflows can be designed visually, e.g., using block diagrams, or textually
using a domain-specific language.

HISTORICAL BACKGROUND

Workflows have a long history in the database community and in business process modeling, in
which case they are sometimes called business workflows to distinguish them from scientific work-
flows. The database community realized early [10] that scientific data management has different
characteristics from more traditional business data management. Early work on scientific workflows
within the database community took a database-centric view by defining data models and query
languages suitable for scientific experiment management systems: the MOOSE data model and
FOX query language have their roots in the late eighties [5] and early nineties [13] and gave rise to
the ZOO experiment management environment [6], an early system based on an underlying object-
oriented database. Another pioneering work that emphasized the importance of workflow concepts
in scientific data management is WASA, a Workflow-based Architecture for Scientific Applications
[8]; the related publication [12] introduced the term ’scientific workflow’ and contrasted such work-
flows with office automation and business workflows. An early benchmark comparing different
database architectures for scientific workflow applications is LabFlow-1 [I].



Other roots of scientific workflow systems include problem solving environments, which emerged
in the nineties in the computational sciences community as intuitive tools to “solve a target class of
problems for scientific computing” [4], and laboratory information management systems (LIMS) [9],
which can be seen as special scientific workflow systems that are used in a laboratory environment
for the management of samples, instrument-based measurements, and other functions, including
data analysis and workflow automation. Similar to many scientific workflow systems, problem
solving environments and LIMS sometimes employ a visual programming paradigm to link together
components. An early, if not the first, visual language that allowed simple interfacing with lab
instruments was G in LabVIEW 1.0, released in 1986 for the Apple Macintosh. Modern incarnations
of LIMS can include functions of enterprise resource planning (ERP) systems and thus go beyond
the scope of current scientific workflow systems.

With the advent of e-Science as a paradigm, scientific workflow research and development
has seen a major resurgence. Similar to the related term cyberinfrastructure, e-Science brings
together computational techniques and tools from the computational sciences, distributed and
high-performance computing, databases, data analysis, visualization, sharing, and collaboration.
There are now a number of new open source as well as commercial scientific workflow systems
available and under active development. For example, a special journal issue of Concurrency and
Computation: Practice and Ezperience covers a number of systems, including Kepler, Taverna,
and Triana among others [2]. For a high-level overview and attempt at a classification of current
scientific workflow systems see [14], which includes also references to many other systems, such as
Askalon, Pegasus/DAGMan, Karajan, etc.

SCIENTIFIC FUNDAMENTALS

Science is an exploratory process involving cycles of observation, hypothesis formation, experiment
design and execution. Today, scientific knowledge discovery is increasingly driven by data analysis
and computational methods, e.g., due to ever more powerful instruments for observation and the
use of commodity clusters for high-performance scientific computing and simulations in the com-
putational sciences. Scientific workflows can be applied during various phases of the larger science
process, specifically modeling and automation of computational experiments, data analysis, and
data management. The results from workflow runs can yield new data and insights and thus may
lead to affirmation, modification, or refutation of a given hypothesis or experiment outcome.

Scientific workflow systems automate the execution of scientific workflows, and may additionally
assist in workflow design, composition, and the management and sharing of workflow descriptions.
Other important functions include support for workflow execution monitoring, for recording and
querying provenance information, for workflow optimization (e.g. exploiting dataflow and con-
currency information for parallel execution), and for fault-tolerant execution. These additional
features also distinguish a scientific workflow systems approach from more traditional script-based
solutions in which such functionality is usually not provided. Workflow provenance information can
be used, e.g., to facilitate the interpretation, debugging, and reproducibility of scientific analyses.
An increasing number of scientific workflow systems now offer support for various forms of prove-
nance. One can distinguish data provenance, i.e., the processing history of data, and provenance
information describing the workflow evolution, i.e., the history of changes of a workflow definition
and the parameter settings used for a particular workflow instance.

Scientific workflows are often visually represented as directed graphs (Figures [1f and [2)) linking
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Figure 1: Example workflow represented in the Taverna workflow system. This workflow extracts
gene [Ds from human chromosome 22 with mappings to disease functions and homologues in mouse
and rat; fetches base pairs of the associated DNA sequences; combines the sequences into a FASTA
file; performs a multiple sequence alignment; and renders the result. The workflow uses three
soaplab-based analysis operations (seqret, emma, plot) that run on the EBI compute cluster.

atomic tasks or composite components, so-called subworkflows. Tasks can include native functions
of the workflow system, but often correspond to invocations of local applications, remote (web)
services, or subworkflows. Scientific workflows differ from conventional programming in that the
workflows are often more coarse-grained and involve wiring together of pre-existing components and
specialized algorithms. Figure [I| shows a simple bioinformatics workflow in the Taverna system,
consisting of multiple (soaplab) services.

There is currently no standard scientific workflow language, and standards from related commu-
nities (e.g., BPEL4WS) have not found widespread adoption in the scientific workflow community.
For example, job-based grid workflows are often represented as directed acyclic graphs (DAGs),
which are then scheduled on a computational grid or cluster computer according to the implied
task dependencies. In this model of computation, each task is executed only once per workflow run
and task scheduling amounts to finding a topological sort for the partial order implied by the DAG.
Other, more sophisticated models of computation consider tasks as independent and continuously
executing processes which can receive and send many different data items per workflow run. Scien-
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Figure 2: Example scientific workflow in the Kepler system: (a) user interface for creating, editing,
and executing scientific workflows; (b) a visual representation of the data product (a phylogenetic
tree) computed by a workflow run; and (c) a viewer for navigating the data provenance (lineage)
captured in an execution trace. This workflow uses a combination of local and remote (web) services
to perform multiple sequence alignment and phylogenetic tree inference on input DNA sequences.

tific workflow systems that support such models of computation may thus be used for data stream
processing and continuous queries. Similar to business workflows, formal approaches such as Petri
nets can be used to describe scientific workflow execution semantics. However, the dataflow models
of computation of many scientific workflow systems can exhibit both task- and pipeline-parallelism
where token order is important. A standard computation model for such dataflow systems is
the Kahn Process Network model. The structurally simple linear Kepler workflow in Figure 2]
is achieved via a special model of execution, implemented by a so-called dz’rectorEl The COMAD
(Collection-Oriented Modeling And Design) director in Figurespeciﬁes that workflow components
work on a continuous, XML-like data stream which passes through all components eventually. Each
component is configurable to compute only on certain (tagged) data collections; results are injected
back into the stream. The resulting more linear workflows are easy to comprehend and evolve over

Kepler inherits from the underlying Ptolemy II system the capability to use distinct directors at different workflow
modeling levels and thus to combine different models of computation in a single workflow.



time, another important advantage over script-based solutions.

KEY APPLICATIONS

Scientific workflows now span virtually all areas of the natural sciences. Bioinformatics is a par-
ticularly active application area (cf. Figures [If and , but the spectrum of disciplines employing
scientific workflow systems is much wider and includes particle physics, chemistry, neurosciences,
ecology, geosciences, oceanography, atmospheric sciences, astronomy and cosmology, among others.

URL to CODE

A number of open source scientific workflow systems are available, among them:
Kepler: http://www.kepler-project.org
Taverna: http://taverna.sourceforge.net
Triana: http://www.trianacode.org
For a list including many other systems, see http://www.extreme.indiana.edu/swf-survey/.

CROSS REFERENCES
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RECOMMENDED READING

A collection of articles on scientific workflow applications, formal foundations, and scientific work-
flow systems can be found in a recent book [I1]. The findings of an NSF-funded workshop on sci-
entific workflows are reported in [3]. Other special issues on scientific workflows appeared, e.g., in
Concurrency and Computation: Practice and Experience [2] and in the ACM SIGMOD Record [7].
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