
Efficient Ray Tracing of Volume Data

MARC LEVOY
University of North Carolina

Volume rendering is a technique for visualizing sampled scalar or vector fields of three spatial
dimensions without fitting geometric primitives to the data. A subset of these techniques generates
images by computing 2-D projections of a colored semitransparent volume, where the color and
opacity at each point are derived from the data using local operators. Since all voxels participate in
the generation of each image, rendering time grows linearly with the size of the dataset. This paper
presents a front-to-back image-order volume-rendering algorithm and discusses two techniques for
improving its performance. The first technique employs a pyramid of binary volumes to encode
spatial coherence present in the data, and the second technique uses an opacity threshold to adaptively
terminate ray tracing. Although the actual time saved depends on the data, speedups of an order of
magnitude have been observed for datasets of useful size and complexity. Examples from two
applications are given: medical imaging and molecular graphics.

Categories and Subject Descriptors: E.l [Data]: Data Structures-trees; 1.3.3 [Computer
Graphics]: Picture/Image Generation-display algorithms; 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling-curue, surface, solid, and object representations; 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism-uisible line/surface algorithms

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hierarchical spatial enumeration, medical imaging, molecular
graphics, octree, ray tracing, scientific visualization, volume rendering, volume visualization, voxel

INTRODUCTION

The increasing availability of powerful graphics workstations in the scientific
and computing communities has catalyzed the development of new methods for
visualizing discrete multidimensional data. In this paper we address the problem
of visualizing sampled scalar or vector fields of three spatial dimensions, hence-
forth referred to as volume data. We direct our attention to a family of visuali-
zation methods called volume-rendering techniques in which the sample array is
displayed directly, that is, without first fitting geometric primitives to it. We
further focus on a subset of these volume-rendering techniques in which a color
and an opacity are assigned to each voxel, and a 2-D projection of the resulting
colored semitransparent volume is computed [9, 21, 29, 331. The principal

This research was supported by ONR grant N00014-86-K-0680, NIH Division of Research Resources
grant RR02170-05, NC1 grant POl-CA47982, and IBM.
Author’s address: Department of Computer Science, University of North Carolina, Chapel Hill, NC
27599.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0730-0301/90/0700-0245 $01.50

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990, Pages 245-261.

246 l Marc Levoy

advantages of these techniques over other visualization methods are their superior
image quality and the ability to generate images without explicitly defining
surface geometry. The pri:ncipal drawback of these techniques is their cost. Since
all voxels participate in the generation of each image, rendering time grows
linearly with the size of the dataset.

This paper presents a front-to-back image-order volume-rendering algorithm
and discusses two strategies for improving its performance. The first optimization
is based on the observation that many datasets contain coherent regions of empty
voxels. In the context of volume rendering, a voxel is defined as empty if its
opacity is zero. Methods for encoding coherence in volume data include octree
hierarchical spatial enumeration [25], polygonal representation of bounding
surfaces [lo], and octree representation of bounding surfaces [131. The algorithm
presented in this paper employs an octree enumeration similar to that of [25],
but represents the enumeration by a pyramid of binary volumes or complete
octree [35] rather than by a condensed representation. The present algorithm
also differs from [25] in that it renders data in image order, that is, by tracing
viewing rays from an observer position through the octree, whereas [25] renders
in object order, that is, by traversing the octree in depth-first manner while
following a consistent direction through space.

The second optimization is based on the observation that, once a ray has
struck an opaque object or has progressed a sufficient distance through a
semitransparent object, opacity accumulates to a level where the color of the ray
stabilizes and ray tracing can be terminated. The idea of adaptively terminating
ray tracing was first proposed in [34]. Many algorithms for displaying medical
data stop after encountering the first surface or the first opaque voxel. In this
guise, the idea has been reported in [15, 30, and 321 and perhaps elsewhere. In
the present algorithm, surfaces are not explicitly detected. Instead, they appear
in the image as a natural by-product of the stepwise accumulation of color and
opacity along each ray. Adaptive termination is implemented by stopping each
ray when its opacity reaches a user-selected threshold level.

The reduction in image-generation time obtained by applying these optimiza-
tions is highly dependent on the depth complexity of the scene. In this paper we
focus on visualizations consisting of opaque or semitransparent surfaces. A plot
of opacity along a line perpendicular to one of these surfaces typically exhibits a
bump shape several voxels wide, and voxels not in the vicinity of surfaces have
an opacity of zero. For these scenes, savings of up to an order of magnitude over
brute-force rendering algorithms have been observed. For scenes consisting solely
of opaque surfaces, the cost of generating images has been observed to grow
nearly linearly with the size of the image rather than linearly with the size of the
dataset.

1. BRUTE-FORCE ALGORITHM

Let us first consider the brute-force volume-rendering algorithm described in
[21] and outlined in Figure 1. We begin with a 3-D array of data samples. For
simplicity, let us assume a scalar-valued array forming a cube that is N voxels
on a side. In this paper we treat voxels as point samples of a continuous function
rather than as volumes of homogeneous value. Voxels are indexed by a vector
i=(i,j,k)wherei,j,k=l,... , N, and the value of voxel i is denoted f(i). Using
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data 247

Shading

Voxel colors C(i)

Classification

Ray tracing/resampling Ray tracing/resampling

Pixel u = Cu, u) _
with (color C(u)

I Pixel colors C(u)
I

Fig. 1. Overview of volume-rendering algorithm.

Image containmg
P X P pixels Object space

Voxel i = (i
with value f

,i, k)
‘(8,

with color C(U)
and opacity cu(U)

Fig. 2. Coordinate systems used during volume rendering.

local operators, a scalar or vector color C(i) and an opacity a(i) are derived for
each voxel.

Parallel rays are then traced into the data from an observer position as
shown in Figure 2. Let us assume that the image is a square measuring P pixels
on a side and that one ray is cast per pixel. Pixels and, hence, rays are indexed
by a vector u = (u, u) where U, u = 1, . . . , P. For each ray, a vector of colors and

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

248 - Marc Levoy

opacities is computed by resampling the data at W evenly spaced locations along
the ray and by trilinearly interpolating from the colors and opacities in the
eight voxels surrounding each sample location. Samples are indexed by a vector
U = (u, u, w) where (u, /L)) identifies the ray and w = 1, . . . , W corresponds to
distance along the ray with w = 1 being closest to the eye. The color and opacity
of sample U are denoted C(U) and a(U), respectively. Finally, a fully opaque
background is draped behind the dataset, and the resampled colors and opacities
are composited with each other and with the background to yield a color for the
ray. This color is denoted C(u).

The rendering algorithms in [9] and [21] process data from back to front, while
the algorithms in [29] and [33] operate from front to back. In this paper we work
from front to back, compositing the color and opacity at each sample loca-
tion under the ray in the sense of [27]. Specifically, the color Gout (u; U) and
opacity (Y,,~(u; U) of ray u after processing sample U are related to the color
c zplaces(~; U) and opacity ai”(u; U) of the ray before processing the sample and
the color C(U) and opacity a(U) of the sample by the transparency formula

l?o”t(U; U) = Qii,(U; U) + C(U)(l - CXin(ll; U)) (14
and

%ut(U; U) = ain(U; U) + CfRJ)(l - ain(u; U)) (lb)

where Ci,(u; U) = Cin(u; U)ai”(u; U), eout(u; U) = C,,,,(U; U)O~,,~(U; U), and
e&J, = C(U)a(U).

After all samples along a ray have been processed, the color C(u) of the
ray is obtained from the expression C(u) = Gout (u; W)/ol,,,(u; W) where W =
(u, v, W). If a fully opaclue background is draped behind the dataset at w ’ =
W + 1 and cornposited under the ray after it has passed through the data, then
aOut(u; W’) = 1 where W’ = (u, v, w’), and this normalization step can be
omitted.

The ray-tracing, resampling, and cornpositing steps of the brute-force rendering
algorithm are summarized as follows:

procedure TraceRay, begin
C(u) := 0;
a(u) := 0;
x1 := First(u);
x* := Last(u);
U1 := flmage(x,)l;
Up := Llmage(x2)J;
(Loop through all samples falling within data)
for U := U1 to U, do begin

x := Object(U);
(If sample opacity > 0,)
(then resample color and composite into ray)
a(U) := Sample(a, x);
if F(U) > 0 then b?gin

C(U) := Sample(C, x);
C(u) := e(u) + e(u,(l - a(u));
a(u) := o!(u) + cu(‘LJ)(l - a(u));

end
end

end TraceRay,,

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data 249

The First and Last procedures accept a ray index and return the object-space
coordinates of the points where the ray enters and leaves the data, respectively.
These coordinates are denoted by real vectors of the form x = (x, y, z) where
1 5 x, y, z ‘: N. The Object and Image procedures convert between object-space
coordinates and image-space coordinates. Although these calculations normally
require matrix multiplications, they can be simplified for the restricted case of
an orthographic viewing projection by retaining the coordinates computed in the
previous invocation and using differencing. The Sample procedure accepts a 3-D
array of colors or opacities and the object-space coordinates of a point, and
returns an approximation to the color or opacity at that point by trilinearly
interpolating from the eight surrounding voxels.

2. OPTIMIZED ALGORITHM

The first optimization technique we consider is hierarchical spatial enumeration.
For a dataset measuring N voxels on a side where N = 2M + 1 for some integer
M, we represent this enumeration by a pyramid of M + 1 binary volumes as
shown in Figure 3 for the case of N = 5. Volumes in this pyramid are indexed by
a level number m where m = 0, . . . , M, and the volume at level m is denoted V,.
Volume V. measures N - 1 cells on a side, volume VI measures (N - 1)/2 cells
on a side, and so on up to volume V,, which is a single cell. Cells are indexed by
a level number m and a vector i = (i, j, k) where i, j, k = 1, . . . , N - 1, and the
value contained in cell i on level m is denoted V,(i). We define the size of cells
on level M to be 2”’ times the spacing between voxels. Since voxels are treated
as points, whereas cells fill the space between voxels, each volume is one cell
larger in each direction than the underlying dataset as shown in Figure 3. We
also place voxel (1, 1, 1) at the front-lower-right corner of cell (1, 1, 1). Thus, for
example, cell (1, 1, 1) on level zero encloses the space between voxels (1, 1, 1)
and (2, 2, 2).

We construct the pyramid as follows: Cell i in the base volume V,, contains a
zero if all eight voxels lying at its vertices have opacity equal to zero. Cell i in
any volume V,, m > 0, contains a zero if all eight cells on level m - 1 that form
its octants contain zeros. In other words, let (1, 2, . . . , k]” be the set of all
n-vectors with entries (1, 2, . . . , k}. In particular, (1, 2, . . . , k)3 is the set of all
vectors in &space with integer entries between 1 and k. We then define

1 if cu(i + Ai) = 1
V,(i) = for i E (1, 2, . . . , N - 1}3 and any Ai E (0, 1j3 (2a)

0 otherwise

and

if V,-,(2i - Ai) = 1

foriE{l,2,..., s[andanyAiE(0,113 (2b)

0 otherwise

for m = 1, . . . , M.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

250 l Marc Levoy

Level 0
containing 4 X 4 X 4 cells

Level 2
containing one cell

Voxel (5, 5, 5)
I

Cell (1, 1, 1)
\

on level 0 Voxel (1, 1, 1)

/

. . . .
,..’

/
. . . .

@

Cell i = (1, j, k)
on level m
having value V,(i)

Fig. 3. Hierarchical enumeration of object space for N = 5.

We now reformulate the ray-tracing, resampling, and cornpositing steps of our
rendering algorithm to use this pyramidal data structure. For each ray, we first
compute the point where the ray enters the single cell at the top level. We then
traverse the pyramid in the following manner: When we enter a cell, we test its
value. If it contains a zero, we advance along the ray to the next cell on the same
level. If the parent of the new cell differs from the parent of the old cell, we move
up to the parent of the new cell. We do this because if the parent of the new cell
is unoccupied we can advance the ray further on our next iteration than if we
had remained on a lower level. This ability to advance quickly across empty
regions of space is where the algorithm saves its time. If, however, the cell being
tested contains a one, we move clown one level, entering whichever cell encloses
our current location. If we are already at the lowest level, we know that one or
more of the eight voxels lying at the vertices of the cell have opacity greater than
zero. We then draw samples at evenly spaced locations along that portion of
the ray falling within the cell, resample the data at these sample locations,
and composite the resulting color and opacity into the color and opacity of the
ray.

The second optimization technique we consider is adaptive termination of ray
tracing. Our goal is to quickly identify the last sample location along a ray that
significantly changes the color of the ray. Returning to eq. (la), we define a
significant color change as one in which C&u; U) - Cin(U; U) > E for some small
E > 0. Since ai”(U; U) in eq. (lb) increases monotonically along the ray, no
significant color changes occur beyond the point where (Y,,~(u; U) first exceeds
l- E. This becomes our termination criterion. Higher values of c reduce rendering
time, while lower values reduce image artifacts. For the datasets used in this
paper, E = .05 usually represents a satisfactory compromise.
ACM Transactions on Graphics, Vol. 3, No. 3, July 1990.

Efficient Ray Tracing of Volume Data 251

Combining both of these optimizations gives us the following algorithm:

procedure TraceRayJu) begin
C(u) := 0;
a(u) := 0;
x := First(u);
m := m,,,;
(Loop until beyond data or opacity > threshold]
while IrzBounds(x) and (Y(U) 5 1 - c do begin

i := Zndex(m, x);
(If high-level cell contains a one, drop a level}
if V,(i) and m > mmin then m := m - 1;
else begin

(If level-zero cell contains a one, render it)

if V,(i) then RenderCell(u, x, Next(m, x, u));
(Advance to next cell and maybe jump to higher level)
while Parent(m, Znder(m, Next(m, x, u))) # Parent(m, i) and m < M

do begin
i := Parent(m, i);
m := m + 1;
end
x := Next(m, x, u);

end
end

end TraceRay,

procedure RenderCell(u, x1, x2) begin
U1 := rZmage(x,)l;
U, := lZmage(x,)J;
{Loop through all samples falling within cell]
for U := U1 to U2 do begin

x := Object(U);
(If any of eight surrounding voxels have opacity > 0,)
(then resample color and opacity and composite into ray]
if y,,(Zndex(O, x)) then begin

C(U) := Sample(C, x);
(y(U) := $ample(F, x);
C(u) := C(u) + C(U)(l - a(u));
a(u) := a(u) + a(U)(l- a(u));

end
end

end RenderCell.

The Index procedure accepts a level number and the object-space coordinates
of a point, and returns the index of the cell that contains it. The Parent procedure
accepts a level number and cell index, and returns the index of the parent cell.
The Next procedure accepts a level number and a point on a ray, and computes,
using a method similar to that in [2], the coordinates of the point where the ray
enters the next cell on the same level. The RenderCell procedure composites the
contribution made to a ray by the specified interval of volume data. The algorithm
terminates when the ray leaves the data as detected by the InBounds procedure.

Figure 4 shows in two dimensions how a typical ray might traverse a hierar-
chical enumeration. The level-zero cell corresponding to each nonempty voxel is
denoted by a shaded box. The largest empty cell enclosing each empty voxel is

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

252 - Marc Levoy

Empty and nonempty
level 0 cells

Sample location

Ray-cell intersection

Fig. 4. Ray tracing of hierarchical enumeration.

denoted by an unshaded box. The sequence of points computed by the Next
procedure are denoted by circular dots. In regions containing many nonempty
level-zero cells, the spacing between these dots is close to the spacing between
voxels. We are therefore led to ask the question, why not simply resample the
data at these points? We observe, however, that these points are not evenly
spaced along the ray. If the data are resampled at such nonuniformly spaced
points, a noise component may be added to the resulting image [7]. To avoid
these artifacts, we superimpose a set of evenly spaced sample locations, as shown
by the rectangular tick marks in Figure 4, and then limit ourselves to resampling
the data at these locations.

Assuming that we are rendering a nonempty dataset, most cells on the top
levels of the pyramid will contain ones. It is therefore inefficient to begin our
traversal there. For the datasets used in this paper, traversal costs were minimized
by setting rnmax = M - 2 for all values of M. Assuming an orthographic viewing
projection, the cost of advancing a ray from one cell to the next by computing
ray-cell intersections is higher than the cost of advancing the ray from one
sample location to the next using differencing. It is therefore inefficient to
descend to level zero. Instead, we descend to some higher level, loop through
the sample locations falling within that cell, and render those for which
Vo(lnder(O, x)) = 1. For t,he current implementation, mmin = 2 yields the best
results.

The memory required for the optimized algorithm is 2N3 bytes to hold a
monochrome color and opacity for each voxel, (s”+l - 1)/7 bits to hold the
pyramid of binary volumes, and P2 bytes to hold a monochrome output image.
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data 253

Condensed representations of the pyramid such as linear octrees [E] are possible,
although the amount of memory saved would be small compared to the size of
the color and opacity arrays, and the cost of accessing a cell would generally be
higher.

3. COMPARISON TO RAY TRACING OF GEOMETRICALLY
DEFINED SCENES

The tracing of rays through coherent regions of empty voxels in volume data is
analogous to the tracing of rays through expanses of empty space in geometrically
defined scenes. This problem has received much attention in the computer
graphics literature (see [4] for an excellent survey), and it is useful to compare
the present algorithm to strategies for speeding up ray tracing of geometric
scenes.

One such strategy is to place bounding volumes around primitives or groups of
primitives. Rays are tested first against these volumes and, if a volume is hit,
then against its contents. Bounding volume schemes that have been tried include
spheres [34], parallelepipeds [28], extruded extents [191, and convex hulls [20].
These methods can be applied to volume data by fitting geometric primitives to
the sample array. Primitives that have been used for this purpose include opaque
cubes [X3], polygonal meshes constructed from 2-D contours [lo], and voxel-
sized polygons generated directly from 3-D data samples [24]. The principal
drawback of this approach is that fitting of primitives requires making a binary
classification of the data. As a result, these methods often exhibit false positives
(spurious surfaces) or false negatives (erroneous holes in surfaces), particularly
in the presence of small or poorly defined features.

An alternative strategy is to subdivide space into disjoint cells and to
associate with each cell a list of primitives that fall wholly or partially inside it.
Rays are advanced incrementally through the scene, moving from cell to cell.
When a ray enters a cell that contains primitives, the ray is tested against those
primitives; when a ray enters a cell marked as empty, the ray is simply advanced
to the next cell. Variants of this approach include uniform subdivision of space
into a regular 3-D grid of cubic cells [ll], adaptive subdivision into parallel-
epipeds, generalized cubes, or tetrahedrons [8], and adaptive hierarchical sub-
division into cubic cells of varying size using octrees [14]. These methods can be
applied to a geometric description of the volume data by fitting primitives as
described above, or they may be applied directly to the sample array. Specifically,
if we treat each data sample as a cell, the resulting regular 3-D grid of cells is
analogous to uniform subdivision of a geometric scene. Similarly, octree repre-
sentations of volume data are analogous to adaptive hierarchical spatial subdi-
visions of geometric scenes.

The analogy between spatial enumeration of volume data and spatial subdivi-
sion of a geometric scene is not exact, however, and comparisons made in the
literature between competing schemes for subdividing geometric scenes do not
scale well when applied to volume data. In particular, spatial subdivisions of
geometric scenes typically consist of hundreds of cells each containing many
primitives [6], whereas volume datasets consist of tens of millions of spatially
ordered cells each containing a single data sample. Several researchers [2, 6, 111

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

254 l Marc Levoy

have reported that, for the geometric scenes they have tested, uniform subdivision
outperforms hierarchical subdivision. For the volume datasets considered in this
paper, a hierarchical data structure is more efficient.

4. IMPLEMENTATION AND RESULTS

To understand how the algorithm behaves on typical scenes, let us consider some
examples. The characteristics of three datasets are given in Table I. The first is
a computerized tomography (CT) study of a human skull mounted in a Lucite
head cast. To demonstrate the effect of semitransparent surfaces on the per-
formance of the algorithm, this dataset was rendered twice, once with a
semitransparent air-Lucite boundary surface (Figure 5) and once with a
completely transparent boundary surface (Figure 6). The second dataset is
a portion of an electron density map of staphylococcus aureus ribonuclease.
A volume rendering of an isovalue surface from this map is shown in Figure 7.
The polymer backbone crosses the image from bottom to top, and two tyrosine
residues with their characteristic six-atom benzene rings can be seen extending
to the left and right sides of the backbone. A color-coded stick representation of
the molecular structure has been superimposed on the image to aid in its
interpretation. To study th.e growth of rendering cost with respect to dataset size,
this dataset was rendered at three different spatial resolutions, the largest of
which is shown in Figure 7. The last dataset is a CT study of a complete human
head, a volume rendering of which is shown in Figure 8.

The time required to calculate voxel opacities for a dataset is proportional to
the number of voxels it contains. The time required to calculate voxel colors is
proportional to the number of nonempty voxels (voxels whose opacity is nonzero).
For the 256 X 128 x 113 voxel jaw with semitransparent skin (Figure 5), these
two steps look 45 s and 15 s, respectively, on a Sun 4/280. The time required to
construct a pyramid of binary volumes is proportional to the number of cells the
pyramid contains. The computation of each cell requires accessing eight spatially
adjacent locations in a 4-D array and performing seven logical “or” operations.
For Figure 5 this step took about 30 s. Since the pyramid depends on the array
of opacities rather than on the original data, it must be recomputed whenever
these opacities change. The pyramid is independent of observer position, however,
and can be used to efficiently generate multiple views from a single set of
opacities.

The combined costs of ray tracing, resampling, and cornpositing for all three
datasets are summarized in Table II. Separate entries are provided for the brute-
force algorithm, the optimized algorithm with adaptive termination of ray tracing
disabled by setting E = 0, and the fully optimized algorithm with E = .05. As the
table shows, hierarchical enumeration reduced rendering time by a factor of
between 2.0 and 5.0 for this data, and adaptive termination of ray tracing added
another factor of between 1.3 and 2.2. We also observe that adding a semi-
transparent surface to the rendering of the skull fragment decreased the amount
of time saved but did not eliminate the savings completely. We finally note that
doubling the spatial resolution of the electron density map increased rendering
time by roughly a factor of eight for the brute-force algorithm and five for the
optimized algorithm.
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data 255

To help us interpret these results, the cost of generating Figure 8 has been
broken down into its constituent parts. Using the brute-force rendering algorithm
described in Section 1, the cost of finding all nonempty samples along a ray is
proportional to the length of the ray clipped to the boundaries of the dataset.
For the observer position used in Figure 8, a visualization of this cost is shown
in Figure 9a. Brighter pixels represent more work. The image is essentially an
X ray of a cube of uniform density. The cost of resampling and cornpositing the
nonempty samples along a ray is proportional to the number found along the
ray. For the dataset under consideration, a visualization of this cost is shown in
Figure 9b. This image is essentially an X ray of a binary representation of the

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

256 l Marc Levoy

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data

Table II. Rendering Times

Name

data. As expected, it is brightest along silhouettes where rays pass through large
amounts of bony material. The total cost of rendering Figure 8 using the brute-
force algorithm is a weighted sum of Figures 9a and b.

Using hierarchical enumeration, the cost of finding all nonempty samples along
a ray is proportional to the number of iterations through the outer loop in the
TraceRay, procedure plus the number of tests of level-zero cells performed in the
RenderCell procedure. A visualization of this cost is shown in Figure 10a. This
image is essentially an X ray of an octree. The cost of resampling and compositing
the nonempty samples is shown in Figure l0b. Since the use of hierarchical

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

258 l Marc Levoy

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data

enumeration alone does not reduce the number of samples composited, Fig-
ure 10b is identical to Figure 9b. The total cost of rendering Figure 8 using
hierarchical enumeration is a weighted sum of Figures 10a and b.

Adaptive termination of ray tracing reduces the number of nonempty samples
that must be found. For E = .05, a visualization of the reduced cost is shown in
Figure 11a. In regions where fewer samples are processed, resampling and
cornpositing costs drop as well, as shown in Figure 11b. The total cost of rendering
Figure 8 using both optimization techniques is a weighted sum of Figures 11a
and b.

5. CONCLUSIONS

An algorithm for efficiently visualizing sampled scalar or vector fields of three
spatial dimensions has been described. The algorithm employs both hierarchical
spatial enumeration and adaptive termination of ray tracing to reduce rendering
costs. Any opacity assignment operator that partitions a volume dataset into
coherent regions of opaque and transparent voxels is a candidate for this
algorithm. Although the amount of time saved depends on the depth complexity
of the partitioned scene, savings of more than an order of magnitude have been
observed for many datasets.

If there is coherence present in a dataset, there may also be coherence present
in its projections. This is particularly true for data acquired from sensing devices,
where the acquisition process often introduces considerable blurring. We can

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

260 . Marc Levoy

take advantage of this coherence by casting a sparse grid of rays, less than one
per pixel, and adaptively increasing the number of rays in regions of high image
complexity. Images may be formed from the resulting nonuniform array of sample
colors by interpolation and resampling at the display resolution. In many cases,
this optimization reduces rendering time by another order of magnitude [23].
Alternatively, a sequence of successively more refined images can be generated
at equally spaced intervals of time by casting more rays, adding the resulting
colors to the sample array, and repeating the interpolation and resampling steps.

A strategy used to speed up ray tracing of geometrically defined scenes that
has not been addressed in this paper is to group together rays emanating from
similar locations and traveling in similar directions. Specific techniques include
the light buffer of [16], the ray coherence algorithm of [26], and the ray
classification algorithm of [3]. In the present algorithm, an orthographic viewing
projection is used, and shadowing, reflection, and refraction are not supported.
All rays consequently travel in the same direction. Many volume-rendering
systems offer a perspective viewing projection, however, and the author has
developed algorithms for casting shadows through volume data [22]. Directional
data structures might be useful in these cases. Other ray-tracing techniques that
might be applicable to volume rendering include generalized rays such as beams
[171, cones [11, and pencils [31], and statistical optimizations such as distributed
ray tracing [7] and frame-to-frame coherence [5].

ACKNOWLEDGMENTS

The author wishes to thank Professors Henry Fuchs, Stephen M. Pizer, Frederick
P. Brooks, Jr., and Turner Whitted of the University of North Carolina Computer
Science Department, and Drs. Julian Rosenman and Edward L. Chaney of the
North Carolina Memorial Hospital Radiation Oncology Department for their
advice and support. Thanks are also due to John Gauch for many enlightening
discussions and to the anonymous reviewers for their useful suggestions. The CT
scans used in this paper were provided by the North Carolina Memorial Hospital
Radiation Oncology Department. The electron density map was provided by Dr.
Chris Hill of the University of York Chemistry Department, and was reformatted
and brought on-line with the help of Mark Harris.

REFERENCES

1. AMANTIDES, J. Ray tracing with cones. Comput. Graph. 28, 3 (July 1984), 129-135.
2. AMANTIDES, J., AND WOO, A. A fast voxel traversal algorithm for ray tracing. In Proceedings

of Eurographics ‘87, G. Marechal, Ed. Elsevier North-Holland, New York, 1987,3-10.
3. ARVO, J., AND KIRK, D. Fast ray tracing by ray classification. Comput. Graph. 21,4 (July 1987),

55-64.
4. ARVO, J., AND KIRK, D. A survey of ray tracing acceleration techniques. In SZGGRAPH 88

Course Notes, vol. 7 (Atlanta, Ga., Aug.). ACM, New York, 1988.
5. BADT, S., JR. Two algorithms for taking advantage of temporal coherence in ray tracing. Visual

Comput. 4 (1988), 123-132.
6. CLEARY, J. G., AND WYVILL, G. Analysis of an algorithm for fast ray tracing using uniform

space subdivision. Visual Conzput. 4 (1988), 65-83.
7. COOK, R. L. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1 (Jan. 1986),

51-72.
8. DIPPE, M., AND SWENSEN, J. An adaptive subdivision algorithm and parallel architecture for

realistic image synthesis. Con~put. Graph. 18, 3 (July 1984), 149-158.

ACM Transactions on Graphics, Vol. !9, No. 3, July 1990.

Efficient Ray Tracing of Volume Data 261

9. DREBIN, R. A., CARPENTER, L., AND HANRAHAN, P. Volume rendering. Comput. Graph. 22, 4
(Aug. 1988), 65-74.

10. FUCHS, H., KEDEM, Z. M., AND USELTON, S. P. Optimal surface reconstruction from planar
contours. Commun. ACM 20,lO (Oct. 1977), 693-702.

11. FUJIMOTO, A., TANAKA, T., AND IWATA, K. ARTS: Accelerated ray-tracing system. IEEE
Comput. Graph. Appl. 6,4 (Apr. 1986), 16-26.

12. GARGANTINI, I. Linear octtrees for fast processing of three-dimensional objects. Comput. Graph.
Image Process. 20 (1982), 365-374.

13. GARGANTINI, I., WALSH, T. R. S., AND Wu, 0. L. Displaying a voxel-based object via linear
octtrees. Proc. SPZE 626 (1986), 460-466.

14. GLASSNER, A. S. Space subdivision for fast ray tracing. IEEE Comput. Graph. Appl. 4, 10 (Oct.
1984), 15-22.

15. GOLDWASSER, S. Rapid techniques for the display and manipulation of 3-D biomedical data.
In NCGA ‘86 Tutorial (Anaheim, Calif., May 1986).

16. HAINES, E. A., AND GREENBERG, D. P. The light buffer: A shadow-testing accelerator. IEEE
Comput. Graph. Appl. 6, 9 (Sept. 1986), 6-16.

17. HECKBERT, P. S., AND HANRAHAN, P. Beam tracing polygonal objects. Comput. Graph. 18, 3
(July 1984), 119-127.

18. HERMAN, G. T., AND LIU, H. K. Three-dimensional display of human organs from computer
tomograms. Comput. Graph. Image Process. 9 (1979), 1-21.

19. KAJIYA, J. T. New techniques for ray tracing procedurally defined objects. Comput. Graph. 17,
3 (July 1983), 91-102.

20. KAY, T. L., AND KAJIYA, J. T. Ray tracing complex scenes. Comput. Graph. 20, 4 (Aug. 1986),
269-278.

21. LEVOY, M. Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8,3 (May 1988),
29-37.

22. LEVOY, M. Display of surfaces from volume data. Ph.D. dissertation, Dept. of Computer Science,
Univ. of North Carolina, Chapel Hill, May 1989.

23. LEVOY, M. Volume rendering by adaptive refinement. Visual Comput. 6, 1 (Feb., 1990), 2-7.
24. LORENSEN, W. E., AND CLINE, H. E. Marching cubes: A high resolution 3D surface construction

algorithm. Comput. Graph. 21, 4 (July 1987), 163-169.
25. MEAGHER, D. Geometric modeling using octree encoding. Comput. Graph. Image Process. 19

(1982), 129-147.
26. OHTA, M., AND MAMOURU, M. Ray coherence theorem and constant time ray tracing algorithm.

In Proceedings of CG International ‘87, T. L. Kunii, Ed. 1987,303-314.
27. PORTER, T., AND DUFF, T. Cornpositing digital images. Comput. Graph. 18, 3 (July 1984),

253-259.
28. RUBIN, S. M., AND WHITTED, T. A 3-dimensional representation for fast rendering of complex

scenes. Comput. Graph. 14, 3 (July 1980), 110-116.
23. SABELLA, P. A rendering algorithm for visualizing 3D scalar fields. Cornput. Graph. 22, 4 (Aug.

1988), 51-58.
30. SCHLUSSELBERG, D. S., AND SMITH, W. K. Three-dimensional display of medical image

volumes. In Proceedings of NCGA ‘86, vol. III (Anaheim, Calif., May). 1986, 114-123.
31. SHINYA, M., TAKAHASHI, T., AND NAITO, S. Principles and applications of pencil tracing.

Comput. Graph. 21, 4 (July 1987), 45-54.
32. TROUSSET, Y., AND SCHMITT, F. Active-ray tracing for 3D medical imaging. In Proceedings of

Eurographics ‘87, G. Marechal, Ed. Elsevier North-Holland, New York, 1987, 139-149.
33. UPSON, C., AND KEELER, M. VBUFFER: Visible volume rendering. Comput. Graph. 22,4 (Aug.

1988), 59-64.
34. WHITTED, T. An improved illumination model for shaded display. Commun. ACM 23, 6 (June

1980), 343-349.
35. YAU, M., AND SRIHARI, S. N. A hierarchical data structure for multidimensional digital images.

Commun. ACM 26,7 (July 1983), 504-515.

Received June 1988; revised March 1989; accepted April 1989

Editors: Loren Carpenter and John C. Beatty

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

