Using Motion to Illustrate Static 3D Shape -
Kinetic Visualization

EricB. Lum Aleksander Stompel Kwan-Liu Ma
University of California, Davis

Abstract—

In this paper we present a novel visualization technique — kinetic visu-
alization - that uses motion along a surface to aid in the perception of 3D
shape and structure of static objects. The method uses particle systems,
with rules such that particles flow over the surface of an object to not only
bring out, but also attract attention to information on a shape that might not
be readily visible with a conventional rendering method which uses lighting
and view changes. Replacing still images with animations in this fashion, we
demonstrate with both surface and volumetric models in the accompanying
videos that in many cases the resulting visualizations effectively enhance
the perception of three-dimensional shape and structure. We also describe
how for both types of data a texture-based representation of this motion be
rendered using PC graphics hardware for interactive visualization. Finally,
the results of a user study that we have conducted is presented, which show
evidence that the supplemental motion cues can be helpful.

Keywords— animation, visual perception, particle systems, scientific vi-
sualization, volume rendering, graphics hardware, texture.

|. INTRODUCTION

Scientific visualization is often concerned with the creation
of 2D visual depictions of the features found in 3D data sets
with the goal of having these 2D images provide scientists with
insights into their data. Unfortunately, this intermediate 2D rep-
resentation can introduce ambiguities since it is merely a 2D
projection of this 3D data. This is particularly a problem when
rendering semi-transparent materials with direct volume render-
ing. In this case, changes in pixel luminance can ambiguously
be the result of a number of factors. It can be caused by the il-
lumination of any one of the overlapping surface layers, it can
be an indication of opacity, or can be a result of the color map
specified by the transfer function. Our work deals with the use
of motion as a way of providing supplemental cues to aid in
the perception of these often ambiguous 3D structures found in
scientific visualization.

Time-varying sequences of images are widely used in visual-
ization as a means to provide an extra dimension of information
for perception to occur. This animation might be as simple as
the changing of camera or object positions or can include ani-
mations resulting from time-varying changes in the data itself.
However, using motion that is independent of changes in view-
ing direction for conveying the shape of static objectshas been a
rather unexplored area. In this paper, we present a visualization
technique, which we call kinetic visualization, for creating ani-
mations that illustrate the shape of a static object in an intuitive
manner using motion.

This work is motivated by the observation that the flow of fast
moving water over a rock, a dynamic flame from an open fire, or
even a school of fish exhibit motion that gives the perception of
shape. Our technique, the basic idea of which is also described

* CIPIC & Department of Computer Science, University of California, One
Shields Avenue, Davis 95616, {lume,stompel,ma}@cs.ucdavis.edu

Fig. 1. A single frame of an animation showing a PET scan of a mouse brain.
The particles help to illustrate one of the function levels while direct volume
rendering gives context to their motion. The method described in this paper uses
the motion of particles to illustrate shape. As such, a static image like the one
shown does not demonstrate the technique. The reader is encouraged to watch
the accompanying videos.

in our previous work [1], is built on the inspirations we received
from kinetic art [2], the studies done in cognitive science, specif-
ically on structure-from-maotion perception [3] [4], the ideas of
particle systems [5], and the work of Interrante [6] on using tex-
ture to convey the shape of overlapping transparent surfaces. It
is unique because we are able to apply motion as a supplemental
cue to enhance perception of shape and structure, and because
the mation is created not only according to the characteristics of
the data but also using a set of rules based loosely on physics
and biology. A static image from an animation generated using
our technique is shown in Figure 1. Because of the nature of the
techniques presented, readers are advised to watch the accom-
panying videos in order to follow the exposition. The videos can
be downloaded from:
http://www.cs.ucdavis.edu/"maZkinvis/

The technique introduced in this paper is not meant to be a re-
placement for traditional rendering techniques that use lighting
and viewpoint changes to indicate shape, rather it can augment
those methods for more intuitive and effective visualization as
illustrated in Figure 2.

We expand on our previous work [1] in this paper, describing
how a texture based representation of this motion can be used
for improved interactivity with a larger number of motion prim-
itives using commodity PC graphics hardware. In particular we
describe how 2D textures can be used to remove the need for
sending position information of each motion primitive across
the graphics bus. For volume data we describe how by using
dynamic volumetric particle textures with the multi-texturing



Fig. 2. The kinetic visualization technique we describe is not meant to be a
replacement for conventional rendering methods. For example, the moving par-
ticles on the left are used in combination with traditional volume rendering to
create the visualization on the right. Since our technique uses motion to illustrate
shape, neither of these still image is representative of our technique.

capability of commaodity PC graphics cards and the temporal
compression technique described in [7] we achieve interactive
texture-based volumetric Kinetic visualization. It is important
to point out that our technique is based on motion, rather than
texture, to illustrate shape; graphics texture hardware is merely
used as a means of generating that motion.

Il. VisuAaL CUES

In recent years there has been increasing amounts of research
in the application of non-photorealistic rendering (NPR) to sci-
entific visualization with the goal of creating more perceptually
effective visualizations [8] [6] [9]. The reason being that artists
for centuries have dealt with the situation of trying to create
meaningful representations of a 3D world using 2D media. Al-
though NPR techniques are often beneficial, the modifications
made by these techniques to the hue and luminance of the pixels
in an image can also introduce their own type of ambiguity. As
an example, aerial perspective [10] might be used to illustrate
depth, where far away objects are rendered in cooler blue less
saturated colors, similar to how an artist might illustrate distant
mountains. This can introduce ambiguity with respect to the use
of the color blug, since it can become unclear if an object is blue
because of its material or because of its depth.

To present more shape cues to the viewer, our technique uses
motion as a means of providing supplemental information to the
user. This does, however, also introduce its own type of ambi-
guity. Namely, since our method uses motion to illustrate shape,
it can also give the impression of motion or direction that is not
physically present. Therefore, the technique is not appropriate
for the visualization of time-varying phenomena since the mo-
tion used could give the impression of changes not present in re-
ality. Our technique is also not appropriate for vector-field data
sets since the particle movement can convey direction contrary
to that found in the data. Nevertheless we believe there is a large
class of static scalar data sets to which the method is applicable.

We have applied kinetic visualization to two different types of
static data. One includes surface models represented as polygo-

nal meshes, in which case particle motion is influenced by sur-
face normal, principal curvature direction, and curvature mag-
nitude. The other type of static data is regularly sampled scalar
volumetric data, where scalar value, gradient magnitude, gradi-
ent direction, principal curvature direction, and transfer function
are used in the calculation of particles motion.

1. RELATED WORK

The perception of shape through motion, called "structure-
from-motion", has long been studied in psychology [11]. Treue
et al. [4] demonstrate that the movement of points on an object
can give the perception of shape, using as stimulus a rotating
cylinder with a random dot pattern on the surface. Their work
shows a "building up" time is required for mental generation of
a surface representation from the integration of point velocities.
They also find that subjects were able to perform various tasks
with peak performance when points had lifetimes of at least 125
milliseconds (ms), and that with lifetimes of less than 60 ms
shape perception from motion did not occur. It should be noted,
however, that the dot patterns in their research were attached to
a rigid structure rather than moving over the structure itself as is
the case with our work.

Further work by Andersen and Bradley [3] demonstrates that
structure-from-motion perception requires either a large number
of dots, or fewer dots that appear in varying positions over time.
Their work also suggests that the middle temporal area (MT) of
the brain is essential for the structure-from-motion perception.

Wanger, Ferwerda, and Greenberg [12] explore visual cues
by conducting three psychophysical experiments in which the
accuracy of interactive spatial manipulation performed by sub-
jects was measured. Their study shows that different visual cues
facilitate different tasks. Motion is found to have a substan-
tial positive effect on performance accuracy of orienting tasks in
which spatial location is less important but relative alignment in-
formation is needed. Limoges et al. [13] study the use of motion
to give the perception of correlations between variables. Their
work focuses on the display of statistical data, not the geometric
data that we deal with in our work.

Kinetic art incorporates real or apparent movement in a paint-
ing or sculpture. Kinetic artists often use various means to de-
emphasize form and color in favor of movement. From studies
in neurology, it is evident that an entire area of the brain is de-
voted to processing motion information. Zeki [2] proposes that
the same area is essential for appreciating kinetic art.

Motion blur [14],[15] captures the effect of motion in still im-
ages and is widely used in producing realistic animations. The
work presented in this paper deals with the inverse problem,
where instead of using a static image to represent a dynamic
phenomenon, dynamic animations are generated for the visual-
ization of static data.

Motion without movement [16] assigns perceptual motion to
objects that remain in fixed positions by using oriented filter-
ing. This technique can generate a continuous display of instan-
taneous mation. Line integral convolution [17], based on the
same principle, low-pass filters a noise function along a vector
field direction to create visualization of direction information.

Our work applies particle systems, which have been used to
model a set of objects over time using a set of rules [5]. They



(b)

have been applied to the modeling of a wide variety of phenom-
ena, including smoke, fire, and trees, using a set of either deter-
ministic or stochastic rules of motion [10]. These rules can be
based on physics, for example gravity, or even biology, as is the
case with flocking behaviors.

The shape, density, transparency, and size of particles can
have an impact on the visual appearance and resulting percep-
tion cues. Interrante [18] has done a comprehensive study on
using opaque stroke texture to improve the perception of shape
and depth information of overlapping transparent surfaces. Our
work considers particle shape to some extent, but the focus of
our work is particle motion, rather than shape.

Using particles as a representation of shape is also related to
point-based rendering. Point-based rendering algorithms typi-
cally use reconstruction filters that disguise the appearance of
the point representation [19]. In some ways our work can be
thought of as a variation of point-based rendering where the
points move over time and are intentionally made visible.

In the volumetric case, our work is analogous to splatting [20]
with a limited budget of splats. The location and size of each
particle are not specified to represent the entire volume, but
rather are positioned such that their location and movement cre-
ate a dynamic representation of the static volume. In this way,
our technique allows for the volume visualization of extremely
large volumetric data sets with a limited rendering budget.

IV. MOTION STRATEGIES

In this section we discuss the set of rules we apply to gener-
ate geometrically meaningful motion. The overall goal is to cre-
ate rules resulting in particles that indicate shape by smoothly
flowing over an object, with locally consistent directions, and a
density distribution that does not let particles "clump™ together
in regions of little interest. Many of the rules imposed on the
particles are loosely based on biology or physics. It is our belief
that these types of rules are desirable since they are similar to
the types of stimulus the human visual system has been adapted
to process.

(d)

Fig. 3. The yellow arrows illustrate the direction of the particles and are not part of our kinetic visualization technique. (a) Particles are constrained to lie along an
object’s surface. Without the addition of other rules, particles simply move with random trajectories along the surface. (b) Particles flow over an object following
the first principal curvature directions(PCD). Following the first PCDs does not guarantee that particles follow an object’s maximum curvature with consistent
directions. (c) The use of flocking adds local consistency to the particle directions. By limiting the degree flocking is applied, particles are still influenced by the
first principal curvature directions. (d) Particle directions can also be made more consistent by making the particles have a tendency to move in a user specified
"preferred” direction resulting in an appearance that in some ways resembles the flow of water over an object.

A. Moation Along the Surfaces

Since we would like to better illustrate an object’s shape, rules
are imposed to constrain the motion of particles to a surface. The
motion of particles along an object’s surface over time presents
the viewer with a set of vectors (trajectories) that run parallel to a
surface. In the case of viewing a mesh, this rule is accomplished
by simply constraining the particles to lie on the mesh as shown
in Figure 3(a).

In the case of volumetric data, the rules are applied to restrict
motion along the local gradient. Particle movement is reduced
along the gradient direction as illustrated in Figure 4 and can be
described in the following equation:

— -

I-jn+1 =Dn-— (é‘ n)é

where Dp.1 is the new particle direction, Dy, is the particle di-
rection in the previous iteration, and Gis the gradient direction.
This results in particles that move along and do not leave the
surface of interest. After every iteration, velocities are normal-
ized to have constant magnitude or speed in 3D world space. A
particle with reduced speed in projected screen space thus pro-
vides cues that it is either moving in a direction near parallel to
the view direction or is far from the viewer and thus has reduced
speed on the screen as a result of perspective. If particle speed
was allowed to vary, such depth and orientation cues would be
lost.

D Gradient

Fig. 4. Particles are constrained to have a direction perpendicular to the gradi-
ent. The particle is shown in red, Dn1 is the new particle direction, and Dy is
the particle direction in the previous iteration.



B. Principal Curvature Direction

The principal curvature directions (PCDs) indicate the direc-
tions of minimum and maximum curvature on a surface. In-
terrante [6] describes how line integral convolution along the
principal curvature directions can generate brush-like textures
that create perceptually intuitive visualizations since the result-
ing textures "follow the shape" of the object being rendered.
Similarly we use principal curvature directions to create parti-
cles that "follow the shape" of a surface. Particle directions are
adjusted so the particles flow in a manner that favors the first
principal curvature direction. This is shown in Figure 5 and can
be expressed as:

I_jn_._l = (1 —keCm) Bn + (kccm)é

where k. is a scale factor used to specify the degree the prin-
cipal curvature direction influences particle direction, C is the
principal curvature direction vector, and ¢y, is the magnitude of
the principal curvature direction vector. Note that a curvature
direction at any point is the same forward as backward. When
PCD is incorporated with particle direction, its orientation is ad-
justed so that it is most consistent with the current direction of
the particle. The PCD rule results in particles that smoothly flow
over an object, although the particles are not guaranteed to move
in the same direction as shown in Figure 3(b).

\,ﬁ,,/
—
- Q—"/
O

S

Fig. 5. Particle direction is adjusted to be more closely aligned with the principal
curvature direction

Curvature

C. Consistent Directions

The motion of dots in opposite directions can suppress re-
sponse to the middle temporal (MT) area of the brain and can
give perceptual cues of differences in depth [3]. We therefore
use a set of rules that move particles in directions consistent with
their neighbors. This is particularly important since the PCD-
based rule in the previous section can cause particles to follow a
PCDs in opposite directions. We use two different types of rules
to enforce consistency.

The first method we use to give the particles more consistent
directions is to assign the particles flock-like behavior. A flocks
exhibits motion that is fluid, with each member still exhibiting
individual behavior. Thus flocking can be used to add local uni-
formity to particle motion while still allowing particles to have
motion shaped by outside forces like principal curvature direc-
tion. Reynolds [21] presents a method for creating flock-like
particle systems using behaviors that include velocity matching,

collision avoidance, and flock centering. We have found that
adjusting particle direction towards that of the flock to be an ef-
fective method in yielding more consistent particle directions.
This rule makes each particle attempt to match the direction of
its neighbors. Flock direction for each particle is calculated as
the average of the neighboring particle directions weighted by
distance. The manner in which particle directions are adjusted
based on flocking is illustrated in Figure 6 and can be expressed
by the following equation:

Bnt1 = (1—k¢)Dn+keF

where ks is a constant interactively specified by the user that
controls the extent the flock vector affects the particle direction,
and F is the flock vector for this given particle. At times flock-
ing can result in motion that contradicts other rules that are im-
posed. By varying the constant k; and not enforcing strict direc-
tion matching, particles can still exhibit motion influenced by
other rules, like those involving principal curvature directions,
while still adding consistency with respect to their neighbors as
shown in Figure 3(c). Collision avoidance is used to give par-
ticles a more uniform distribution and will be discussed in the
next section. Flock centering is not used since it is not our in-
tention to have the particles stay together as a coherent unit but
rather to create particles exhibiting locally flock-like behavior.

Fig. 6. Using flocking, each particle has its direction adjusted to be similar to
its neighbors’ directions.

A simpler method for giving particles a consistent directions
is to simply define a “preferred” direction the particles move, as
shown in Figure 3(d). This can be expressed by the following
equation:

and is illustrated in Figure 7 where Kk, is a percentage of the con-
tribution by preferred direction and P is the preferred direction.
The result is a flow of particles that move over a surface with an
appearance similar to water flowing over an object. One draw-
back of this approach is that at the extreme ends of an object,
where the particles flow from and flow into, the directions of the
particles are not consistent; that is, the particles would move in
opposite directions either to or from a point on the surface.



- Preferred
n+1 Direction

" )

~_ -

Fig. 7. A particle direction becomes a weighted sum of the previous direction
and a user specified "preferred” direction.

D. Particle Density

Treue et al. [4] demonstrate that if moving stimuli become
too sparse, shape perception is diminished. Consideration must
therefore be taken with regard to particle density. Since the num-
ber of particles has a direct influence on rendering time, it is de-
sirable to have a set of rules that efficiently uses a limited budget
of particles. In addition, rules regarding particle density are nec-
essary since following principle curvature directions can result
in particles accumulating in local minima.

F,

Fig. 8. Particle density is controlled by using magnetic repulsion. All particles
have the same charge and are repelled by other particles with forces inversely
proportional to the square of their distances. In this case particle one (in green)
exerts force F1 and particle two (in black) exerts force F» on the red particle in
the middle.

By using a set of rules based on magnetic repulsion, more uni-
form particle densities can be achieved. Particles are modeled as
having magnetic charges of the same sign, and are repelled from
their neighbors with forces inversely proportional to the square
of their distances as shown in Figure 8. This is similar to the
rule Reynolds uses for flock collision avoidance [21]. In order
to avoid numeric instability from particles that are too close, the
total force is clamped. Using this technique yields more uni-
form particle densities. Use of this rule, however, must be lim-
ited, since it can make particles move with directions contrary
to other rules.

Another method for controlling particle density is to use par-
ticle lifetimes designed to prune particles from high density re-
gions, to be respawned in regions of lower density. During each
update iteration, the density around each particle is calculated
and the particle is removed with a probability proportional to its

density. The calculated density can be artificially manipulated
based on other factors such as visibility and curvature magnitude
to further prune particles for even more effective use. Removed
particles are added to regions that had the lowest densities dur-
ing the previous iteration. Finally, for volumetric data sets, in
order to permit the user to apply the particles to particular struc-
tures of interest, a separate particle transfer function can be used
to limit the particle to specific ranges of scalar values. Figure 9
shows the result of setting transfer functions to illustrate two
different isovalues in a volumetric dataset.

E. Particle Color

The color of each particle can be varied to provide additional
information. Gooch et al. [8] describe how variation in hue from
warm to cool can be used to indicate shading, reserving varia-
tion in color intensity for outlines and highlights. Schussman
et al. [22] use hue to indicate line direction when visualizing
magnetic field lines. Either of these ideas can be incorporated
as a particle system rule. The hue of each particle can be varied
from cool to warm based on lighting. Particles can also have
their color temperature varied depending on direction, with par-
ticles moving in a direction toward the viewer being rendered
in warmer colors than receding particles. Particle color can be
used to indicate other scalar values, such as curvature magnitude
or gradient magnitude for volumetric data sets.

Special consideration with regard to particle color must be
taken into account when the particles are combined with tradi-
tional rendering techniques. For example, if particles are to be
drawn on top of a surface, the particles should not have a color
too similar to the surface or they will not be visible. In addition
it is often desirable to have particle color intensity vary based on
shading parameters. This is particularly helpful when the parti-
cles are dense, since they can obscure the lighting cues provided
by the underling surface. If particles are lit, a different set of
lighting parameters should be used for the particles in order to
avoid their blending in with the surface and becoming difficult to
see, especially when a particle is in a darker region. For exam-
ple, if the particles and surface are both rendered in extremely
dark colors, it can be difficult to see the particles, even if they
differ in hue from the surface. In our implementation we allow
the user to vary the particle color based on gradient magnitude,
view vector, and direction vector. Each of these adjustments in
color can be used alone or combined together.

To avoid rapid changes in particle color and facilitate the
tracking of particles by the user, new particle colors are aver-
aged with their colors from the previous iteration.

F. Particle Sze and Shape

The size and shape of each particle can also influence how
it is perceived. For example, if particle size is varied based on
density such that the gaps between particles are filled, more tra-
ditional point based rendering occurs. Since for our work indi-
vidual particles must be visible for their motion to be perceived,
particles are rendered small enough that the amount of overlap
with neighboring particles is minimal. Figure 10 shows four ex-
amples of particles rendered in differing sizes.

There are a number of ways that particle size can be varied.
Particles can be rendered in perspective such that closer parti-



Fig. 9. By using a separate particle opacity map which limits paticles to certain ranges of scalar values in a volume, different function levels can be emphasized

and clarified as shown in this two-body electron probability data set.

cles appear larger than further particles, providing a visual cue
of particle position as shown in Figure 11. Particle size can be
varied based on local density such that the gaps between par-
ticles is uniform, similar to splatting. Finally, particle size can
simply be kept constant.

Interrante [18] found stroke length to be critically important
in her work using strokes oriented along principle curvature di-
rections. Since the emphasis of our work is motion and indi-
cating direction using temporal means, we did not thoroughly
investigate how particle shape can be varied to better illustrate
shape when combined with motion. As an option, however, par-
ticles can be drawn as disc that are slanted to be perpendicular
to the surface direction to provide a cue with respect to surface
orientation as shown in Figure 11. Particles can also be rendered
with a motion blurred stroke-like appearance as a temporal anti-
aliasing mechanism.

G. Particle Rendering Performance

We experimentally studied kinetic visualization on a PC with
an AMD Athlon 1.4 GHz processor and Nvidia Geforce 3 graph-
ics card. Several of the rules use operations that require access
to neighboring particles. For polygon surface rendering, parti-
cles are stored in bins on a per polygon basis with the closest
particles found by iteratively traversing adjacent polygons. In
this manner we are able to render approximately 11,000 parti-
cles at 20 frames-per-second using all the rules described in the
previous section. For volumetric data, particles are stored in
bins determined by hashing a particles spatial location. This is
less efficient than binning based on polygons, so we can render
1,500 particles at 20 frames per second. If more particles are
used than can be calculated and rendered at interactive rates, an-
imation can be generated in an offline batch mode. Alternately,
particle positions over time can also be precomputed in a batch
mode process for higher performance rendering, although ren-

dering time still remains proportional to the number of particles
since each particle must still be transfered to and rendered by
the graphics card.

In our implementation the user can turn off and on the various
rules and tune motion parameters until the desired visualization
is achieved. The interactivity of this process allows the quick
selection of parameters that are appropriate for emphasizing the
specific regions of interest to the user.

V. TEXTURE-BASED RENDERING

As an alternative to the point-based rendering of particle mo-
tion, we have also investigated the use of dynamic textures for
realizing kinetic visualizations. This gives the benefits typically
associated with the use of textures, namely the replacement of
complex geometry information (per particle positions) with reg-
ularly sampled arrays of texels. For polygon meshes 2D textures
that vary over time are applied to a surface, while in the volumet-
ric case Kinetic visualization textures are used which are blended
with direct volume rendering using hardware accelerated, multi-
pass, multi-texture rendering techniques.

A. Polygon Surface Textures

Typically the rendering of particles requires the transfer of
their positions from main memory to the graphics card across
the relatively slow AGP graphics bus for every frame. The
amount of data that needs to be transferred is proportional to
the number of particles and thus can become a bottleneck in the
rendering process when a large number of particles are used.
However, by creating time varying 2D textures to which the par-
ticles have been applied it becomes necessary to only send this
new texture across the graphics bus rather than geometry. Thus
by using textures there is a fixed amount of data that needs to
transferred for every frame regardless of the number of parti-
cles, which for a sufficiently large number of particles yields



(@)

Fig. 10. Particles are shown rendered in different sizes. Notice that when the particles are rendered too small as shown in (a) they become difficult to see. When
the particles are rendered too large as shown in (d) it is also difficult to resolve the individual particles.

Fig. 11. Particles can be rendered as flat discs that lie perpendicularly to the
gradient direction to further indicate surface orientation. The particles shown
are also drawn in perspective where farther particles are smaller than nearer
particles in this electron distribution simulation volume for a protein molecule.

higher frame rates.

We therefore allow the user to generate a set of video textures
that are precalculated in a batch mode process and played back
during rendering. Unlike when a normal 2D video, during play-
back the video textures permit the user to interactively rotate a
surface while it is rendered in real time. The main advantage of
this technique is that it eliminates the need for a high speed CPU
for computing particle trajectories and only requires a PC with
2D texture hardware to work. Since the kinetic visualization
textures are precomputed in a batch process, a larger number of
particles can be used and more computationally expensive rules
for controlling particle direction can be applied. For example
when computing flocking behavior or magnetic repulsion based
density control, a larger neighborhood of particles can be used
for making these calculations.

It is desirable to use shorter animation sequences so the tex-
ture data fits entirely in video memory, or at least entirely in
main memory. For example, rendering the venus model with
a short sequence of time varying 2048x2048 textures that fit
entirely in video memory can be rendered at 300 frames per
second with a Geforce 3 since no data needs to be transfered
across the AGP bus. On the other hand, rendering occurs at 17
frames per second if the textures must be transfered across the
AGP bus from main memory. However, if the animated textures
are played in a loop, discontinuities appear between the first and
last time step which can be particularly distracting when fewer
time steps are used. To avoid this discontinuity particles should
therefore have temporal overlap between looped sequences. To
create a looped video sequence of length T, particles are limited
to having a life-time less than T and are initialized with a ran-
domized starting times. The looped particles sequence is taken
from some simulated windowed sequence of length T, with all
particles initialized prior to the start of that window removed,
and replaced with particles at the end of the windowed sequence
as shown in Figure 12. Although this does not strictly enforce
density and flocking behavior, in practice, we have found this
to severely reduce discontinuities that exist between windowed
animation sequences.

It is desirable to allow the user to dynamically vary the par-
ticle density during playback. This can be accomplished using
a variation of the tonal art maps texturing technique described
by Praun et al. [23]. Multiple sets of kinetic visualization tex-
tures can be created with differing levels of particle density, with
each lower density texture containing a subset of the particles in
the previous level. During rendering the two texture levels clos-
est in density to the desired density are combined using multi-
texturing with blending to approximate the desired particle den-
sity. The main disadvantage of this technique is the extra storage
requirement of having the different texture levels. If the textures



|
|
> > —
|
—:> — . : -
: > - : .
: - : .
i |
t +T

Fig. 12. In order to create looped animations of length T, those particles that
exist prior to some time t (shown in red on left) are removed, and replaced with
those particles that exist at time t+T (shown in blue on right).

Pass 1 Pass 2

Texture | Textre Scalar data values Scalar data values
Unit 0 ) )
Palette Transfer function Particle opacity map
Texture Texture Normal Map Normal Map
Unit 1 Palette Lighting palette Lighting palette
Texture Texture N/A KV Texture
Unit 2 Palette N/A Temporal decoding texture
Fig. 13. Rendering requires two passes. The first applies traditional direct

volume rendering while the second rendering pass applies the motion textures.

are stored in main memory, it also requires the transfer of two
textures per time step rather than one across the graphics bus.

B. Volumetric Textures

For visualizing volumetric data sets using kinetic visualiza-
tion texture, time-varying volumes of particle textures are used.
The time-varying volumes are pre-computed and consist of par-
ticles that have been simulated for the entire volume (all scalar
values). During final display, particles are rendered only for
those scalar values of interest using a separate transfer function
for the particles. This approach has the advantage of allowing
for the offline simulation of a much larger number of particles
than could be simulated at interactive rates. In order to create
volumetric video loops of the textures, the same technique for
creating cyclical texture movements as described in the previ-
ous section can be applied.

\Volume rendering of this data is accomplished by using tex-
ture hardware [24] and requires two rendering passes with multi-
texturing that uses three texture units as seen in Figure 13. The
first rendering pass performs traditional direct volume render-
ing with the scalar data and transfer function palette in the first
texture and lighting using a paletted normal-map in the second
unit. The second rendering pass applies the particles to the vol-
ume. The palette in the first texture unit is a transfer function
that determines for which scalar values in the volume particles
are rendered. This is blended with the lighting in the second
texture unit and finally applied to the particles in the third unit.

One limitation of a volumetric representation of the particles

is that the time-varying textures can be extremely large. If the
volumes have a resolution of 256 in each dimension, for exam-
ple, each time step requires 16 megabytes of data, making it
difficult to fit more than a couple of time steps in video mem-
ory, or even tens of time steps in main memory. If these time
varying volumes are stored in main memory, the 1/O require-
ments of sending each time step to the graphics card for every
frame can severely hamper performance. We therefore apply
the temporal compression technique described by Lum et al. [7]
to compress these textures by up to a factor of eight. This per-
mits significantly more time steps to be used, and yields inter-
active frame rates since less texture data needs to be sent from
main memory to the graphics card for each frame. For example,
using a Athlon 1.2 Ghz PC with a Geforce 3 Ti 200 graphics
card, a 256 x 256 x256 volume can be at approximately 3 frames
per second without compression, but 6 frames per second using
compression by a factor of four.

Since this lossy compression technique relies on temporal co-
herence to reduce the size of the textures, we have found it to
work well under conditions that particles move slow enough that
some frame to frame texel overlap of the particles exists. This
is typically the case since the desired motion textures should
have temporal coherence between frames so the particles can be
tracked by the viewer over time. Figure 14 shows a rendered
volume with particles that have been compressed using varying
levels of compression. Image quality is reasonable up to com-
pression levels of four, and falls off noticably at a compression
level of eight.

Tradeoffs exist between the use of particle and texture-based
representations of kinetic visualization motion. A texture-based
prepresentation moves the calculation of particle trajectories to
a pre-computation step allowing for the rendering of more par-
ticles than could be computed in real-time. The texture based
representation, however, does not allow users to have the same
flexibility in varying particle properties such as the influence of
flocking and magnetic repulsion. The pre-computation step can
also take several minutes to complete, especially when using
an extremely large number of particles. It is our belief that the
point-based rendering of particles has advatanges for visual ex-
ploration of a data set, while a texture-based representation is
more suited for the presentation of these structures once they
have been found.

VI. DEMONSTRATION

To demonstrate Kinetic visualization, several animation se-
quences have been made and included in videos accompanying
this paper and can be downloaded at the URL given previously.
Note that all rendering, including volume rendering, was done
in hardware to achieve maximum interactivity. Consequently,
the image quality, especially for the volumetric models, is not
of the same quality as what a software renderer could achieve.
The four models used consist of the following:

A PET scan of a mouse brain (256 x256 x47)

o A fuel injection simulation(64 x64 x64)

« An electron probablitiy distribution simulation(64 x64 x64)
o A CT tooth volume (256 x256x161)

A distorted sphere model (15872 polygons)



Fig. 14. This images of a PET scan of a mouse brain has been rendered using a texture-based representation of the particle motion with differing level of lossy
compression. There is very little noticeable quality degradation until compression by a factor of eight. (a) Uncompressed (b) 2x compression (c) 4x compression

(d) 8x compression

Fig. 15. A single frame of an animation showing a simulation of fuel injection
into a combustion chamber.

o A subdivided Venus model (5672 polygons)

The video sequences (mousel._mpg) , (Fuel .mpg) , and
(neghip.mpg) shows the use of our technique in the visual-
ization of volumetric data sets. The particles help to illustrate
one of the function levels while direct volume rendering gives
context to their motion. A single frame from (fuel .mpg) is
shown in Figure 15. The video sequence (compar ison.mpg)
begins with a still image that shows the type of shape ambiguity
that can exist with traditional rendering techniques. With the ad-
dition of the particles, the shape becomes immediately apparent.
It is not the particles by themselves that clarify the shape, rather,
it is the extra shape cues they provide that work in addition to
traditional rendering.

The "rules" videos give examples of each of the different rules
we apply. Notice in pcd . mpg that with the absence of rules, the
random motion of the particles on the Venus model does little to
clarify shape. By having the particles follow the first principal
curvature direction, the particles clearly "follow the shape" of
the model.

The next sequence (Flocking.mpg) shows particles mov-
ing along the tooth data set, but with locally inconsistent direc-
tions. Although the particles seem to have a slight shape clar-
ifying effect, their contrary motions are distracting and make

them difficult to follow. With the addition of flocking, the parti-
cles still move along the shape of the tooth, but move in a much
more locally consistent manner. In the following sequence, par-
ticles flow down the Venus model, in a manner similar to wa-
ter. The downward tendency adds consistency to the motion, yet
the particles still show some tendency toward following the first
principal curvature direction.

Next in density .mpg, the tooth is shown without density
controlling rules. As the particles move over time, they tend
to accumulate in ridges as a result of following the first princi-
pal curvature direction. With the absence of particles in some
regions, the shape becomes less clear. With the addition of mag-
netic repulsion, the distribution of particles becomes much more
uniform and the resulting video reveals more shape information.

The next sequence (size.mpg) illustrates the effect of
changing particle size. When particles are large, they can cover a
surface much like splatting, but their motion becomes obscured.
When particles are small, they can be difficult to see, and do
little to improve perception. The last sequence (mouse2 .mpg)
shows kinetic visualization of the PET data with changing view
direction.

VIl. USER STUDY

For a more objective evaluation of the effectiveness of kinetic
visualization a user study was conducted. Height field data sets
were generated with several randomly placed peaks and valleys,
selected examples of which are seen in Figure 16. A static im-
age and kinetic visualization video sequence using the combined
rules of PCD following, flocking, and magnetic repulsion were
pre-rendered for each data set, with a viewpoint directly above
the surface viewing downward. Observers were given the task
of identifying the points on each surface they felt were clos-
est and furthest in depth from the viewer. For all data sets, the
height and depth of the tallest and shallowest peaks on each sur-
face were at least twice as high or shallow as all others. Sub-
jects were permitted to view each data set for a maximum of 30
seconds, and saw each data set rendered as either a static image
with traditional Phong shading, or with kinetic visualization, but
never both.

Twenty-two subjects, consisting of both undergraduate and
graduate students, were shown fourteen different data sets, half
of which were randomly rendered as either a static image or
with kinetic visualization. Thus, the combined subject selected
154 minimum and maximum points on surfaces rendered using
each method. The results, summarized in Table I, indicate that



' | ‘ ’ .
L '

- 9
Fig. 16. Selected test images from the first user study.

TABLE |
FIRST USER STUDY RESULTS.

| Task | Num. Correct w/ KV | Num. Correct w/o KV ]
Find Max | 100 (65%) 76 (49%)
Find Min | 88 (57%) 67 (42%)
Combined | 188 (61%) 143 (46%)

subjects were more accurate at selecting both the minimum and
maximum points on the surface with kinetic visualization. Of
particular interest, we found that kinetic visualization seemed
most effective in improving task performance for the more am-
biguous data sets with which the subjects were least success-
ful. Although the scope of this user study was fairly limited,
we feel the results are extremely promising, particularly since
the motion parameters remained constant for all data sets. We
have found kinetic visualization to be most effective when the
parameters are fine tuned to a particular data set.

In determining the p-value of the combined data (minimum
and maximum) we treated the number of correct identifications
as the extrema of quantitative data, and then performed a paired
sample t-test, matching shape [25]. The null hypothesis stated
that there was no difference between using and not using ki-
netic visualization (the mean difference is zero), versus kinetic
visualization being better (the mean is different from zero in the
direction of the use of kinetic visualization). The resulting t-
test yielded a test statistic of 3.95 with 27 degrees of freedom.
The resulting p-value was 0.00025, indicating there was a sta-
tistically significant difference in subject performance between
using and not using kinetic visualization.

VIIl. COMPARISON WITH ORIENTED TEXTURES

It is worth discussing some of the differences and similarities
between our technique and the use of static oriented textures to
illustrate shape [6] [26] [27] [23] [28]. Both methods depart
from photorealism to provide supplemental cues to aid in the
perception of shape. To that end, both techniques make exten-
sive use of principal curvature directions to provide these cues.
The two methods require the setting a similar set of parameters;
for static textures one needs to specify the size of the texture
primitive, the density of those primitives as well as the length
it follows a principal curvature direction, which is analogous to
the particle size, density and speed parameters used in our work.

There are, however, significant differences between the two
techniques. First, it should be emphasized that our technique
differs from texture based methods in its use of the motion of
particles to illustrate shape rather than texture. Although we
have described rendering optimizations that use texture graphics
hardware for improved rendering performance of these particles,
our approach is not inherently texture based. A more traditional

10

use of the word "texture” might be associated with the physical
material properties found on the surface of an object, or in com-
puter graphics textures might refer to the application of images
to a surface to approximate these material properties. In this re-
spect our method is not based on textures since the particles in
our work move over a surface and are independent of any phys-
ical texture on the surface itself.

This leads to one advantage of our method over the use of
oriented textures. Namely, oriented texture techniques preclude
the use of more traditional textures that might be used to illus-
trate the properties of a surface. For example the use of hatching
textures can introduces ambiguity between whether the hatching
pattern displayed on a surface is a physical characteristic of the
surface (like a weaved basket) or the result of the rendering al-
gorithm itself. Since our method uses motion to illustrate shape,
and has a dynamic particles representation, traditional textures
can be used in addition to the particles.

Often a priori knowledge of the structure of an object makes
supplemental cues for gaining understanding of the overall
shape unnecessary. When viewing a tooth data set, the viewer
likely has prior understanding of the overall shape of the tooth.
Greater ambiguity in shape, however, can exist in smaller sub-
structures that are particular to that individual data set, thus mak-
ing it desirable to give the user the ability to zoom in on specific
features of interest. By using point-based particle primitives that
can be rendered with a size defined in screen space, rather than
object space, our technique is able to deal with changes in mag-
nification. For example, the user can zoom in to a specific re-
gion in the volume and the particle rendering budget will be
used only to render particles in that region, while the particles,
with their constant screen space size, continue to be effective.
For a texture based approach to handle magnification high res-
olution textures would need to be calculated for smaller scales.
A multi-resolution representation similar to that described by
Praun et al. [23] for 2D surface models could be applied to deal
with such magnifications but could result in impracticably high
storage costs from the 3D textures used for volume data.

For future work we would like to conduct further user studies
to compare the effectiveness of kinetic visualization with static
oriented textures. The video (orientedtexture.mpg)
shows a surface that has been rendered using oriented textures
followed by the same surface rendered using our technique.
Snapshots from this animation is shown in Figure 17(a) and Fig-
ure 17(b). Since the effectiveness of oriented texture as well
as our technique is dependent on a set of rendering parameters,
care would need to be taken with respect to the selection of these
parameters in order to perform a fair comparison of both tech-
niques when conducting a user study. We suspect that one tech-
nigue might not always be better than the other and there might
be differences depending on the types of tasks a user is asked to
perform.

We have begun preliminary research into how our technique
can be applied in combination with oriented textures. The video
sequence (texturekinvis.mpg) shows a surface that has
been rendered using oriented textures that follow the second
principal direction while kinetic visualization illustrates the first
principal direction. A still image of the particles imposed over
an oriented texture is shown in Figure 17(c).



11

(@)

Fig. 17.

(©

Our technique shares some similaries with rendering methods that use oriented textures to illustrate shape. Our kinetic visualization technique is

fundamentally different in the sense it uses motion rather than texture to illustrate shape. (a) An object rendered using oriented textures. (b) A frame from a kinetic
visualization animation (c) A frame from a kinetic visualization animation that has been combined with an oriented texture that illustrates the second principal

curvature direction.

IX. CONCLUSION

There is a growing interest in making perceptually effective
visualizations. In this paper, we summarize our experience with
adding visually rich motion cues to the visualizations for in-
creased clarity and expressiveness. While more work is needed,
our current results are encouraging, demonstrating that it is fea-
sible and desirable to capitalize on motion cues for the purpose
of enhancing perception of 3D shape and spatial relationships.

We have shown that kinetic visualization nicely supplements
conventional rendering for illustrating both volumetric and sur-
face data models. We have also shown how the moving particles
help reveal surface shape and orientation. By utilizing low-cost
commaodity hardware, the Kinetic visualization system we have
built is very affordable. The selective rendering based on parti-
cle budget ensures the critical interactivity required for kinetic
visualization.

For certain classes of data, however, some limitations in the
effectiveness of our technique can be observed. In cases where
the principal curvature directions are not well defined, for exam-
ple flat or spherical regions, the effectiveness of having particles
move along a principle curvature direction is limited. The use
of optimization strategies, like that described by Hertzmann and
Zorin [27] could be used to add direction consistency in these
regions, but consideration would also need to be given to avoid
smoothing subtle features of interest.

It is clear that our technique is not appropriate for visualiz-
ing time varying phenomena. Since the motion of particles in
our work is based on the geometric properties of a data set, the
motion can give the perception of movement that is contrary to
that which is physically occurring. For example, our technique
would not be appropriate for visualizing fluid flow since the mo-
tion of particles could give a misleading indication of flow di-
rection.

Despite the limitations listed above, we believe that kinetic vi-
sualization deserves additional study. Further user studies using
a wider variety of tasks and data could provide valuable feed-
back for improving the technique. We are particularly interested

in studying how kinetic visualization affects the performance of
real world task using real world data. Conducting user studies
comparing kinetic visualization with other visualization tech-
niques, such as oriented textures and rotation, could help to gain
understanding of how the different methods affect shape percep-
tion, and under what types of conditions the different techniques
best suited. This information could be used to create new visu-
alization methods that are even more effective for a wider range
of conditions.

Additional future work includes using improved methods
for computing principal curvature directions, and accelerating
the integrated rendering as much as possible to attain even
higher interactivity. It is hoped the power of motion cues
will be welcomed by others in helping them to effectively per-
ceive/illustrate complex or ambiguous object shape and spatial
relationship.

ACKNOWLEDGEMENTS

This work has been sponsored by the National Science Foun-
dation under contract ACI 9983641 (PECASE Award) and
through the Large Scientific and Software Data Set Visualiza-
tion (LSSDSV) program under contract ACI 9982251. We are
grateful to Dr. Juan Jose Vaquero and Dr. Michael Green at the
National Institutes of Health, GE Aircraft Engines in Evendale,
Ohio, the German Research Council, and SUNY Stony Brook,
NY for providing the test data sets. We would like to thank
Gabriel Chandler for his assistance in performing the statistical
analysis of the results of the user study. We are also grateful to
all of the people who participated in our user study.

REFERENCES

[1] E.B.Lum, A. Stompel, and K.-L. Ma, “Kinetic visualization: a technique
for illustrating 3d shape and structure,” in Proceedings of the Visualization
'02 Conference, 2002.

[2] S. Zeki, Inner Vision, Oxford University Press, 1999.

[3] R.A.Andersenand D. C. Bradley, “Perception of three-dimensional struc-
ture from motion,” Trendsin Cognitive Science, vol. 2, no. 6, pp. 222-228,
June 1998.

[4] S. Treue, M. Husain, and R. A. Andersen, “Human perception of structure
from motion,” Vision Research, vol. 31, pp. 59-75, 1991.



(5]

6]

(71

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

W. T. Reeves, “Particle systems-a technique for modeling a class of fuzzy
objects,” in SGGRAPH ' 83 Conference Proceedings, July 1983, pp. 359-
376.

V. Interrante, “Illustrating surface shape in volume data via principal
direction-driven 3D line integral convolution,” in SGGRAPH 97 Con-
ference Proceedings, August 1997, pp. 109-116.

E. B. Lum, K.-L. Ma, and J. Clyne, “Texture hardware assisted rendering
of time-varying volume data,” in Proceedings of the Visualization '01
Conference, 2001.

A. Gooch, B. Gooch, P. Shirley, and E. Cohen, “A non-photorealistic
lighting model for automatic technical illustration,” in SGGRAPH '98
Conference Proceedings, July 1998, pp. 447-452.

D. Ebert and P Rheingans, “Volume illustration: Non-photorealistic ren-
dering of volume models,” in Proceedings of IEEE Visualization 2000
Conference, October 2000, pp. 195-202.

D. J. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graph-
ics: Principles and Practice, Addison Wesley, 1996.

H. Wallach and D. N. O’Connell, “The kinetic depth effect,” Journal of
Experimental Psychology, vol. 45, pp. 205-217, 1953.

L. R. Wanger, J. A. Ferwerda, and D. P Greenberg, “Perceiving spatial
relationships in computer-generated images,” IEEE Computer Graphics
and Applications, vol. 20, no. 3, pp. 44-58, May 1992.

S. Limoges, C. Ware, and W. Knight, “Displaying correlations using po-
sition, motion, point size or point colour,” in Proceedings of Graphics
Interface ' 89, June 1989, pp. 262-265.

R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
S GGRAPH ' 84 Conference Proceedings, July 1984, pp. 137-145.

M. Potmesil and I. Chakravarty, “Modeling motion blur in computer-
generated images,” in SGGRAPH ’'83 Conference Proceedings, July
1983, pp. 389-399.

W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Motion without move-
ment,” in SGGRAPH ' 91 Conference Proceedings, July 1991, pp. 27-30.
B. Cabral and L. Leedom, “Imaging vector fields using line integral con-
volution,” in SGGRAPH ' 93 Conference Proceedings, August 1993, pp.
263-270.

V. Interrante, H. Fuchs, and S. Pizer, “Conveying the 3D shape of smoothly
curving transparent surfaces via texture,” |EEE Transactions on Visualiza-
tion and Computer Graphics, vol. 3, no. 2, pp. 98-117, April-June 1997.
M. Zwicker, H. Pfister, Jeroen van Baar, and M. Gross, “Surface splatting,”
in SGGRAPH 2001 Conference Proceedings, August 2001, pp. 371-378.
L. Westover, “Interactive volume rendering,” in Chapel Hill Workshop on
Volume Visualization, 1989, pp. 9-16.

C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” in SGGRAPH '87 Conference Proceedings, July 1987, pp. 25—
34.

G. Schussman, K.-L. Ma, D. Schissel, and T. Evans, “Visualizing DIII-D
tokamak magnetic field lines,,” in Proceedings of | EEE Visualization 2000
Conference, October 2000, pp. 501-504.

E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-time hatching,”
in SGGRAPH ' 01 Conference Proceedings, 2001.

A. Van Gelder and U. Hoffman, “Direct volume rendering with shading via
three-dimension textures,” in ACM Symposium on Volume Misualizatrion
'96 Conference Proceedings, 1996.

J. M. Utts and R. F. Heckard, Mind On Satistics, Duxbury Press, 2002.
A. Girshick and A. Interrante, “Real-time principal direction line drawings
of arbitrary 3D surfaces,” in Computer Graphics Visual Proceedings (ACM
S GGRAPH 99 Technical Sketch), 1999, p. 271.

A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in S GGRAPH
2000 Conference Proceedings, August 2000, pp. 517-526.

S. Kim, H. Hagh-Shenas, and V. Interrante, “Showing shape with texture:
two directions are better than one,” in Proceedings of Human Vision and
Electronic Imaging VIII (SPIE), January 2003.

12



