
ECS 122A: Algorithm Design and Analysis Handout 1
UC Davis — Charles Martel April. 4, 2012

Problem Set 1—Due Friday, April 13th, 3:15 PM

H
¯

omework Info Homeworks are due by 3:15 PM on the due date. They are to be turned in at the
marked box in K

¯
emper Hall, room 2131. No late homeworks will be accepted.

Much of what one learns in this course comes from trying to solve the homework problems, so work hard on
them. Doing a conscientious job on the homeworks is the best preparation for the exams. We hope that you
will ultimately solve the majority of the problems, but don’t be surprised if some of them stump you; some
of the problems may be quite challenging.

Your solutions should be terse, correct, and legible. Understandability of the solution is as necessary as
correctness. Expect to lose points if you provide a ”correct” solution with a not-so-good writeup. As with
an English paper, you can’t expect to turn in a first draft: it takes refinement to describe something well.
Typeset solutions are always appreciated.

If you can’t solve a problem, briefly indicate what you’ve tried and where the difficulty lies. Don’t try to
pull one over on us.

If you think a problem was missgraded, please see the grader first. (The grader will hold periodic office
hours; times will be announced later.)

(25) Problem 1. Coin Changing variations

When we have quarters dimes and pennies we described an algorithm (using memeoization)
that uses O(n) time and space to compute the minimum number of coins needed to give
change (program uscmem.c on the class web page). We now explore a faster solution.

(a) If we have quarters, dimes and pennies we showed that the greedy algorithm (use quarters
till below 25 cents) does not always use the minimum number of coins. Argue that if we
want to make change for an amount n ≥ 50 it is always optimal to use quarters until the
remaining amount falls below 50 cents. Hint: i) to show this consider (for contradiction)
change for n > 50 that uses q quarters where (n − 25q) ≥ 50 ; ii) also consider the
remaining change, r which is an amount (n − 25q) = r and has no quarters in it.
Argue that we can always improve this change to use fewer coins, and thus we always
use enough quarters to be sure that r, the change that has no quarters, is less than 50.

(b) For amounts between 25 and 49 cents it may still be correct to use another quarter, but
not always. What is the largest value that uses no quarters to give change optimally?
Justify your answer.

(c) Use the result from part (a) to describe a constant-time algorithm that, given an input
n, returns Q, D and P the number of each coin to give change with the fewest coins. You
may assume (slightly unrealistically) that you can do standard arithmetic operations on
any size numbers in O(1) time. Note: you may use the result of part (a) even if you
didn’t solve part (a).

(25) Problem 2. Problem 4.1-5 in the text (page 75). Note that you should be able to solve this
using a fairly simple short piece of psuedo code (along the lines of the simple, non-recursive,
algorithm we gave for coin changing). Briefly justify the correctness and run time of your
solution.



2 ECS 122A Handout 1: Problem Set 1—Due Friday, April 13th, 3:15 PM

(20) Problem 3.

We consider a variation of the closest point problem where distance is measured using what
is called the manhattan metric. For two points (x1, y1), (x2, y2) their distance is |x1 − x2| +
|y1 − y2|. This is the distance if you could only move parallel to the x or y axis.

(a) Suppose that no two points are closer than d units from each other under the manhattan
metric. Give a bound on the maximum number of points which could exist in a rectangle
which is d units wide and 2d units high (and which is parallel to the x axis).

(b) Can we use the same closest point algorithm we described in class to solve the closest
point problem using the manhattan metric (assuming we now compute distances for this
new metric)? Justify your answer.

(20) Problem 4. We look at analyzing a variant of the coin changing algorithms discussed in class
(and posted on the web page). We consider the setting with pennies, dimes, and quarters.

(a) The following recurrence describes the minimum number of coins to make change.

C(n) = 1 n = 1, n = 10, n = 25
= infinity n < 1
= 1 + MIN(C(n− 1), C(n− 10), C(n− 25)))

When using the non-memoized recursive algorithm to make change (implied by the above
recurrence relation), let W (n) be the number of calls to the, recursive, function NCoins used
to compute C(n) (in the program usc.c on the web page). Write a recurrence relation for
W (n). Note: you are not being asked to solve W (n).

(b)

Let M(n) denote the number of calls used to compute T (n) using the memoized version of
the algorithm. Argue that M(n) = Θ(n). Hint: do not use a recurrence relation.


