
ECS 122B: Algorithm Design and Analysis Handout ??
UC Davis — Charles Martel Feb. 22 2011

Problem Set 4—Due Monday, March 7. 3PM

This problem set will consider approximate solutions to NP-hard problems.

The first problem we will be addressing is bin packing. This problem is intended to explore some
properties of bin packing algorithms, as well as getting more experience with timing and testing
algorithms.

You are to implement various bin-packing algorithms. In each setting you will be packing integers in
the range 1..k and packing them into bins of capacity k. For each setting do your experiments using
random integers (you can modify part of the randgraph.c code from ps2 to get random integers in
the desired range), and try your experiments both for k = 100 and k = 1, 000. Also, do all your
experiments on list of at least 100,000 items.

Your goal is to pack the items as quickly as possible for the given strategy (and report your times),
and also to find good strategies for packing the items effectively (using as few bins as possible).
Thus you should report how well you have packed the items (a good measure is the amount of
waste space per bin: e.g. if you pack items into 13 bins each of capacity 100 and the sum of your
item sizes is 1,170, then the average waste fraction is (1300− 1170)/1300 = .1.

In designing your algorithms you may exploit the fact that you are packing uniform random num-
bers.

1[32]) On-line bin-packing. For this setting you must pack each item before seeing the rest of the
list. However, you can keep as many bins active as you like and you may assume that you know n
the number of items to be packed.

i) Use First-Fit (FF) to pack the items. Note: FF tells you WHERE to put the next item (the first
bin into which it fits), but not HOW to find this bin quickly. In order to make this work quickly
you should use some extra data structure(s) to find the proper FF bin.

ii) Find a better on-line scheme for this setting (better meaning it has less waste than FF and is
still on-line and fast).

2[33]) Off-line bin-packing. You can look at the entire list before packing the items.

i) Use First-Fit decreasing to pack the items.

ii) Try to find a better (and still fast) packing scheme (this may be hard to do since FFD should
work quite well).

3[15]) Optional extra projects:

i) Consider distributions that are not uniform over the entire range (e.g. values uniform on the
range 20..100 for bins of capacity 100).

ii) Your solutions to A/B could exploit the fact that the item sizes were integers in a known range.
Generalize your solutions to work for arbitrary integer values.

You should turn in:

I) Your code for 1) and 2) (emailed to Sam so he can actually run your code.)

2 ECS 122B Handout ??: Problem Set 4—Due Monday, March 7. 3PM

II) A high level description of how you implemented the algorithms to find the first bin that fits,
and your improved algorithms.

III) A summary of your timing experiments on programs A/B (a table listing waste as well as the
run time would be nice for each implementation).

IV) Your conclusions as to the best algorithm for bin-packing. Briefly justify why you made your
choice.

pencil and paper questions:

4[70]) We explore some knapsack issues/extension

A[20]) We showed we could solve the fractional knapsack problem optimally in O(n log n) time by
sorting the vi/wi ratios, then including all the b−1 best items, and just enough of the bth item. We
now consider solving this in O(n) time. Note that we can find the k smallest items in an unsorted
list in O(n) time (this can be done using a simple variant of quicksort in expected linear time, for
simplicity we will assume O(n) worst case time which is also possible; you don’t actually need to
know any details about the algorithm. Just assume a function Select(A, k) that takes an unsorted
array A[1..n], and an integer 1 ≤ k ≤ n and rearranges A so the k smallest values in A are in
position 1..k (in an arbitrary order) and does this in O(n) time.

Hint: use the Select algorithm to find the value of b and the associated ratio.

B[40]) Zero-One knapsack:

The DP algorithm given in 11.8 runs in O(nV) time where V is the number of columns in the table.
We must have V ≥ V ∗ where V ∗ is the optimal value. Since we don’t actually know V ∗ we want
an estimate V that is i) as small as possible, and ii) V ≥ V ∗ .

The book uses V = v1 + . . . vn which meets ii) above but is not too great for meeting i).

i) show that there is an infinite family of inputs (where the number of items n is growing) where
V is significantly larger than V ∗, and the ratio V/V ∗ grows as n grows.

ii) Suggest a rather better way to find V .

iii) The algorithm given in the book finds the optimal value V ∗, but does not find the actual
solution set S. Describe an efficient algorithm to find S once we have constructed the table M and
know V ∗and give its run time.(Hint first figure out the largest index i of an item in the optimal
solution, include that item, then continue on a smaller size problem.)

iv) A suggestion is made to discover the number of columns, V , as the algorithm runs (that is we
start with a small value of V , we know is achievable, and let the table grow as we discover larger
and larger achievable values). We will assume that we can expand the size of our array as needed
(ignoring some practical issues with implementing that): that is, if our current array has c columns,
we can expand it to have c′ > c columns and still keep all our perviously stored data in place..

To use this idea we will assume that an array entry M [i, j] is the smallest weight with value exactly
j using a subset of the first i items.

To start with, for the first row we could use V = v1 since we can’t get a value greater than that
with the first item. M [1, 0] ← 0, M [1, v1] ← w1 and the other entries are all set to W + 1, which
shows it is an invalid solution.

ECS 122B Handout ??: Problem Set 4—Due Monday, March 7. 3PM 3

Let V be the number of columns in an already computed row i−1. Describe how to compute a new
row i, and the (possibly) new number of columns V ′ in the new row. Briefly justify your solution
method and give its run time.

C[10]) The standard 0/1 knapsack problem assumes we have only one copy of each item. We now
extend this to the case where we have multiple copies of each item. Now assume that for the ith
item we can use up to di copies of the item (thus if d1 = 3 we can use zero, one, two, or three copies
of the item, getting respectively value 0, v1, 2v1, or 3v1 and incurring weight 0, w1, 2w1, or 3w1.

Formulate this version of the 0/1 knapsack problem as an integer programming problem.

5[20]) Problem 11-6 in the Kleinberg-Tardos Text

