
Lecture 6, 4.16.2009 
 

Today: 
 
Review: Basic Set Operation:  
 
Recall the basic set operator, !.  From this operator come other set 
quantifiers and operations: 
! ,!  

 ,  
 ! ,!  
\ “Set difference” (sometimes denoted – ,  a minus sign) 
!  - symmetric difference (xor for sets, denoted Δ in your book and   
        sometimes denoted (circled v)) 
x – Cartesian product – A x B is the set of ordered pairs (a,b) with the 1st  
       element in the first set and the 2nd element in the 2nd set 
 
New: 
P – Power set operator, unary operator (takes 1 input). P(x) is the “set of  
       all subsets of x” 
P(X) = {A:A!X} 
 
Lecture 6, April 16 2009 
 
------------------------------------------------------ 
1. Counting, Finite/Infinite Sets (Chap 1.6) 
------------------------------------------------------ 
 
If A is a finite set and B is a finite set, then A U B is a finite set, 
and further,  
 
|A U B| = |A| + |B| - |A   \\ cap cap B|  .|  .   
 
Above is the Inclusion-Exclusion principle (we include all of A and B, then 
exclude those in both that are double counted). 
 
The  book extends this to triples of sets (Corollary 1.10) and more broadly it can 
be extended to any number (with increasingly complex combinations of parts 
included and excluded). 
 



 
------------------------------ 
2. Sets of Sets, Power Sets and Partitions (1.7) 
------------ 
 
Let S = {a,b,c,d,e} 
 
Let T contain subsets of S that contain two consecutive letters: 
 
  T = { {a,b}, {b,c}, {c,d}, {d,e}}  
 
Note that |T| = 4. 
 
The Power Set of a set S, P(S) is a set that contains all subsets of S. 
 
For S={a,b,c},   P(S) = { {}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} } 
 
note that |P(S)| = 2^|S| (each element of |S| can be in a set or not). Thus the 
power set is also denoted as 2^S. 
 
We can represent any subset of a base set U = (x_1, x_2, ..., x_n} using an index 
vector of length n. The ith element of the index vector for a subset T is 1 iff x_i is 
in S. For example, if we use our set S above as U, then the index vector for {a,c} 
is 101.  Note that there are 2^n possible index vectors (since each position can 
be 0/1), and this represents the 2^n elements of P(U). 
 
 
 
More on power sets: 
 
For example, take X={0,1,2}, then 
P(x)={! ,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}} 
We can more systematically enumerate the elements of this set by counting 
in binary just as in a truth table, indicating if the given element is (1) or is 
not (0) in the given set: 
 
 
 “2” “1” “0” 
 0  0  0 !  
 0  0  1 {0} 
 0  1  0 {1} 
 0  1  1 {0,1} 



 1  0  1 {0,2} 
 1  1  0 {1,2} 
 1  1  1 {0,1,2} 
 
(Aside: you should structure our truth tables by counting in binary in the 
usual order, like above, as good practice for readability and to be systematic) 
 
You can also view that in the above table we have a vector of binary values 
where position i is 1 if the element is in the set, 0 if it is not. 
 
Notice in the table that the power set of X had 8 values in it.  In general, if X 
is finite, then  |P(X)| = 2|X| .   Indeed sometimes P(X) is written 2X  as a 
reminder of how big this set is. 
 
As another example, we talked about P(N), where N is the set of natural 
numbers. 
 
 
Using the other set operators (this is mostly stuff not done in class, just 
extra examples): 
 
Next, to help improve or facility with the operators on sets,  we asked if the 
following claim is true or false: 

?

( \ ) \ \ ( \ )A B C A B C=  

 
We can see from the diagram that the statement is false.  Instead, based on 
inspection, it would appear that: 

( \ ) \ \ ( )A B C A B C= !  
 
Proof: It is common to show set-equalities by arguing both inclusions. But 
here we will do it all at once: 



 

( \ ) \  iff \  iff 

( ) ( ) ( ) iff  iff

( ) iff ( ) iff

x \ ( )

x A B C x A B x C

x A x B x C x A x B x C

x A x B x C x A x B C

A B C

! ! " #

! " # " # ! "¬ ! "¬ !

! "¬ ! $ ! ! "¬ ! %

! %

 

 
 
Set vocabulary definitions 
 
A few more words we often use: 
 
 - singleton set – a set with only one element.   
- the empty set is the set with no elements. Denoted ∅. Note this symbol is 
not the same as a Greek letter phi.  (Indeed I believe the origin is 
Norwegian). 
 -  
 
Partitions of Sets 
 
For a set S, a partition of splits the elements into subsets S_1, S_2, ..., S_k such 
that each element of S is in exactly one of the subsets S_i (and no S_i is empty).  
 
Alternately, S_1 U S_2 U... U S_k = S, and for any i,j S_i \cap S_j = {} 
 
The S_i are called cells (sometimes). 
 
For our set S above, if we split into vowels and consents: 
 
P= { {a,e}, {b,c,d} } we get a partition of size 2. 
 
--------------- 
Induction: 1.8 
---------------- 
 
Special property that goes with N = {1,2,3, } 
 
Mathematical Induction: Let P be a proposition define on numbers i in N: that is  
P(i) is True or False for each i in N (e.g. P(i) is true if i is even). 
 
Now suppose P has the following two properties: 
 
i) P(1) is true  // this is know as the Basis 
ii) P(k) -> P(k+1). (for k >= 1)  // This is known as the Induction Step 



 
Then P(i) is true for all i in N. 
 
Often use more general (or less structured) induction in CS. 
 
Example in book. Another example: |P(S)| = 2^ |S| : (P(i) is for |S|=i, |P(S)| = 2^i =  
2^ |S| 
 
Basis: (i) |S|=1, so P(S) = { {}. S}, |P(S)| = 2 = 2^1 = 2^ |S|  
 
Induction Step ii) Assume P(k), (Induction Hypothesis) so for |S|=k, |P(S)| = 
2^k =  2^ |S|. 
 
Now show P(k+1) (using the assumption that P(k)). Recall from our discussion of 
Arguments in Logic that: P(k) AND P(k) -> P(k+1)  |-  P(k+1) 
 
To show P(k+1) let S = {x_1, x_2, ..., x_k+1} for P(S) we can consider two types 
of subsets: those that include x_k+1 and those that don't. Let A be those not 
using x_k+1 and B be those that use x_k+1. Claim: A = P({x_1, ..., x_k}), and 
thus |A| = 2^k (by our  Induction Hypothesis).  
 
Claim: each set in B is of the form T U x_k+1 (alternately, if we remove x_k+1 
from any set in B, we get a set in A). thus |B| = |A|, so  
   |P(S)| = 2 * |A|=  2* 2^k = 2^(k+1) = 2^ |S| 
 
Induction II (strong induction): 
 
i) P(1) is true 
ii) (For all i < k, P(i)) -> P(k). 
 
Then P(i) is true for all i in N. 
 
 
Some formal language theory 
 
! - an alphabet – an alphabet is a finite, nonempty set. Eg,  {0, 1}, {a, b}, 
{0,1,2,3,4,5,6,7,8,9}, {1}, ASCII – these are all alphabets.  Elements in an 
alphabet are called characters (or sometimes symbols). 
 

- Is ∅ an  alphabet?  NO, it is empty. An alphabet must be nonempty. 
 

 - is N, the set of natural numbers,  an alphabet?  No, it is infinite. An 
alphabet must be finite. 



 
A string is a finite sequence of characters. The characters all come from 
some understood alphabet. 
 
 
Examples and more definitions 
 
*! represents all the strings over the alphabet Σ.  This is an infinite set. But 

all the elements in this infinite set are strings of finite length.  If 
{0,1}! =  

Then 
* { ,0,1,00,01,10,11,000, ,111,0000, }!" = K L  

In this case,!  represents the “empty string”. It is the unique string of length 
0.  In the case of the English alphabet: 
 
{ , , }a z! = K  

*! contains dog, fish,! , etc 
 
Suppose x and y are strings,   x, y ∈   Σ∗, 
- Then x y xy=o denotes the characters of x, in order, followed by the 
characters of y, again in order This is known as the concatenation operator; 
we have concatenated the two strings. 
 
Consider x = dog, y = fish, then xy = dogfish. 
 
- The symbols |  …  |, when applied to strings, as in x , denotes the length of 
the string x. So the symbol has a different meaning when applied to sets and 
strings. 
- True or False?  A string exists of length ! .  False, strings are finite. 
 
- True or False?  There exists a unique string of length 1.  The answer 
depends upon the set.  For {1}! = , the unary alphabet, it’s true. For 
alphabets with 2 or more characters, it is false. 
 
- The exponential operator in strings is defined as in 3

1 111= , or more 
generally, xn = x xn-1 for n>0 and x0 = ε . We define the 0th power as the 
empty string, is so the last statement holds true for n=1, i.e. 1

x xx != =o . 


