
Lecture 11: 5/7/2009

Announcements: Ps6 out: Due Tuesday
Midterm back Tues, May 12

Common functions (see 3.4 in book, mostly review I assume): log, exponent,
floor, ceiling, mod,

Skip 3.5

3.6: Recursively Defined Functions

A recursive function is defined by referring to itself. We saw this in defining T(n) the
minimum number of moves to shift n disks in the Tower of Hanoi problem:

T(n) = 1, n=1
T(n)= 2 T(n-1) +1 for n>1

Domain, co-domain, range? N, N, a subset of N: (2^n-1), n=1, 2, …

Two key properties that make this type of definition work: non-recursive definitions
for small base values and each time we refer to the function on the right side, the
argument is smaller than on the left side.

Book does n!:
 f(0)= 1
f(n) = n * f(n-1) n >0

I’ll do fibinacci function (Def 3.2 in book):

F(0)=F(1) = 1
F(n) = F(n-1)+ F(n-2) for n >1

F(2)= F(2-1) +F(2-2) = F(1) +F(0) = 1 +1 = 2
F(3)= F(3-1) + F(3-2) = F(2) + F(1)= 2+1 (or expand F(2))

Give tree and better way to compute.

Function Fibo(n)

If ((n=0) OR (n=1)) Return(1);

Else, Return(Fibo(n-1) + Fibo(n-2))

Fibo is a recursive function

Comments: should make sure n not negative and declare n to be an integer.
Give tree of recursive calls. Argue number of calls at least 2^(n/2).

Alternative:

A an array of size n.
A[0] ← 1;
A[1] ←1;

For i ←- 2 to n DO
 A[i] ← A[i-2] + A[i-1]; (*)

Statement labeled (*) is executed n-2 times and we assume takes at most some
constant about of time c (time to look up or assign to an array), so total time is at most
2*c + (n-1) *c = n *c +c

Note that the above is a function of n, call it T(n), known as a linear function (if n is
twice as large, then time, T(n) is twice as much).

Function Growth rates (3.9) (we skipped 3.7 and 3.8, will return to them later)

We want to be able to compare functions and want to ignore less important terms and
constants. Lets us compare how different programs perform (for example, in the
example for Fibonacci, the second program with T(n) = n *c will significantly
outperform the recursive one, with 2^n calls, even if c is very large eventually, and
typically for moderate n).

Notation: Big O and later Θ (“Big Theta”) and Ω (big Omega).

We say x3 ∈ O(2 x). Kind of like saying x3 \le 2 x "for large x and if you don't care
about constants"

...
Def (Def 3.4 from Schaum's)
 O(g) = {f: \R -> \R such that exists N>0,C>0 s.t.
 |f(n)| <= C |g(n)| for all n>=N}
...

You can actually forget about the | . | and just imagine that f is non-negative valued:
replace f by |f| in case it's not.

 Example:
 nx + 100n ∈ O(nx) YES
 10 n2 ∈ O(n2) YES
 10n2 + 100n + log N in O(n2) YES

 n log n in O(n2) YES
 n2 log in O(n log n) NO

As a practical matter it is pretty easy to get the “right” big O class for a function:

1) throw away all constants multiplying terms or added to them (e.g. 10x+5 becomes
x) Note that you can’t throw away constants that are exponents (e.g. n2 can’t throw
away the 2).

2) among terms added together, throw away all but the fastest growing term
(apply to examples above)

How to prove things like this?
 Suppose want to show
 10 n log(n) + 50n + 1 ∈ O(n log n)

 must find a large enough C, N such that

 10 n log(n) + 50n + 1 <= C n log n

 for all n >= N.
 What C, N would you like? would you like? How about

 10 n log(n) + 50n + 1 <= 61 n log n

Check: true if

 50n + 1 <= 51 n log n

Now 50n < 50n log n if n\ge 3 So the above is true if

 1 <= n log n

But for n >= 3, this is certainly true.
Doing it in the forward direction:

 1 <= n log n
 10n log n + 50n + 1 <= 10n log n + 50 n log n + n log n <= 61 n log n

 when n>=3

n! vs 2^n
 n! ∈ O(2^n) NO
 2^n ∈ O(n!) Yes

n! = (n/e)^n \sqrt(2\π n) (1 + O(1/n))

ln n! \approx n ln n - n

n lg n n n lg n n^2 n^3 2^n
--
10 4 10 40 100 10^3 1024
100 7 100 700 1000 10^6 10^30
1000 10 1000 10^4 10^6 10^9 10^300

...
Θ(g) = {f: R -> R : exists c,C,N such that
 c g(n) <= |f(n)| <= C g(n)
...

Intuitively: O(f(n)) is all functions of growth rate f(n) or less. Θ(f(n)) is all functions
of the same growth rate as f(n).

 Θ(n^2) contains: 7n^2, 3n^2 + 100lg n
 doesn't contain n^2 lg n (too big)
 n lg^2 n (too small)

Draw a picture of common growth rates

 Θ(n!)
 Θ(2^n)
 Θ(n^3)
 Θ(n^2)
 Θ(n log n log log n)
 Θ(n lg n)
 Θ(n)
 Θ(sqrt(n)
 Θ(log n)
 Θ(1)

exercise: where is \sqrt(n)

How to compare
 n^0.5 n log n
 n^0.5 n^0.5 n^0.5 log n
 Bigger

How long does the following code take to run
 for i=1 to n do
 for j=1 to i do
 s += (i+j)^2 - (i+j)

O(n^2)
Θ(n^2)

O(n^3) is true ... but not "tight"

