
Lecture 11: 5/7/2009 
 

Announcements: Ps6 out: Due Tuesday 
Midterm back Tues, May 12 
 
Common functions (see 3.4 in book, mostly review I assume): log, exponent, 
floor, ceiling, mod,  
 
Skip 3.5 
 
3.6: Recursively Defined Functions 
 
A recursive function is defined by referring to itself. We saw this in defining T(n) the 
minimum number of moves to shift n disks in the Tower of Hanoi problem: 
 
T(n) = 1, n=1 
T(n)= 2 T(n-1) +1   for n>1 
 
Domain, co-domain, range? N, N, a subset of N: (2^n-1), n=1, 2, … 
 
Two key properties that make this type of definition work: non-recursive definitions 
for small base values and each time we refer to the function on the right side, the 
argument is smaller than on the left side. 
 
Book does n!: 
 f(0)= 1 
f(n) = n * f(n-1) n >0 
 
I’ll do fibinacci function (Def 3.2 in book): 
 
F(0)=F(1) = 1 
F(n) = F(n-1)+ F(n-2) for n >1 
 
F(2)= F(2-1) +F(2-2) =  F(1) +F(0) = 1 +1 = 2 
F(3)= F(3-1) + F(3-2) = F(2) + F(1)= 2+1 (or expand F(2) ) 
 
Give tree and better way to compute. 
 
 
 



Function Fibo(n) 
 
If ((n=0) OR (n=1) ) Return(1); 
 
Else, Return(Fibo(n-1) + Fibo(n-2)) 
 
Fibo is a recursive function 
 
Comments: should make sure n not negative and declare n to be an integer. 
Give tree of recursive calls. Argue number of calls at least 2^(n/2). 
 
Alternative: 
 
A an array of size n. 
A[0] ← 1; 
A[1] ←1; 
 
For i ←- 2 to n DO 
 A[i] ← A[i-2] + A[i-1]; (*) 
 
Statement labeled (*) is executed n-2 times and we assume takes at most some 
constant about of time c (time to look up or assign to an array), so total time is at most 
2*c + (n-1) *c = n *c +c 
 
Note that the above is a function of n,  call it T(n), known as a linear function (if n is 
twice as large, then time, T(n)  is twice as much). 
 
Function Growth rates (3.9) (we skipped 3.7 and 3.8, will return to them later) 
 
We want to be able to compare functions and want to ignore less important terms and 
constants. Lets us compare how different programs perform (for example, in the 
example for Fibonacci, the second program with T(n) = n *c will significantly 
outperform the recursive one, with 2^n calls, even if c is very large eventually, and 
typically for moderate n). 
 
Notation: Big O and later Θ (“Big Theta”) and Ω (big Omega). 
 
We say x3 ∈ O(2 x).  Kind of like saying x3 \le 2 x "for large x and if you don't care 
about constants" 



............................................... 
Def (Def 3.4 from  Schaum's) 
 O(g) = {f: \R -> \R such that exists N>0,C>0 s.t. 
             |f(n)| <= C |g(n)| for all n>=N}  
............................................... 
 
You can actually forget about the | . | and just  imagine that f is non-negative valued: 
replace f by |f| in case it's not.  
 
 
 
 Example: 
 nx + 100n ∈ O(nx)   YES 
  10 n2 ∈ O(n2)   YES 
  10n2 + 100n + log N in O(n2)   YES 
 
  n log n in O(n2)    YES 
  n2 log  in O(n log n)  NO 
 
As a practical matter it is pretty easy to get the “right” big O class for a function: 
 
1) throw away all constants multiplying terms or added to them (e.g. 10x+5  becomes 
x) Note that you can’t throw away constants that are exponents (e.g. n2 can’t throw 
away the 2). 
 
2) among terms added together, throw away all but the fastest growing term 
(apply to examples above) 
 
How to prove things like this? 
 Suppose want to show  
  10 n log(n)  + 50n + 1  ∈  O(n log n) 
 
 must find a large enough C, N such that   
  
  10 n log(n)  + 50n + 1  <= C n log n 
  
 for all n >= N. 
 What C, N would you like? would you like?  How about  
 



  10 n log(n)  + 50n + 1  <= 61 n log n 
 
Check: true if 
 
                 50n + 1  <= 51 n log n 
 
Now 50n < 50n log n  if n\ge 3   So the above is true if  
 
                 1 <=  n log n 
 
But for n >= 3, this is certainly true. 
Doing it in the forward direction: 
 
                 1 <= n log n 
    10n log n + 50n + 1 <= 10n log n + 50 n log n + n log n  <= 61 n log n 
 
                     when n>=3  
 
 
n!  vs 2^n  
 n! ∈ O(2^n)   NO 
 2^n ∈ O(n!)     Yes 
 
n! = (n/e)^n \sqrt(2\π n) (1 + O(1/n)) 
 
ln n! \approx n ln n - n 
 
n        lg n       n       n lg n    n^2    n^3        2^n 
------------------------------------------------------------ 
10         4        10       40       100    10^3       1024 
100        7        100      700      1000   10^6      10^30 
1000      10        1000     10^4     10^6   10^9     10^300 
 
........................................... 
Θ(g) = {f: R -> R : exists c,C,N such that 
          c g(n) <= |f(n)| <= C g(n) 
........................................... 
 
Intuitively: O(f(n)) is all functions of growth rate f(n) or less. Θ(f(n)) is all functions 
of the same growth rate as f(n). 



 
 Θ(n^2) contains:   7n^2,     3n^2 + 100lg n 
            doesn't contain n^2 lg n  (too big) 
                            n lg^2 n  (too small) 
 
Draw a picture of common growth rates 
 
             Θ(n!) 
             Θ(2^n) 
             Θ(n^3) 
             Θ(n^2) 
             Θ(n log n log log n)  
             Θ(n lg n) 
             Θ(n) 
             Θ(sqrt(n) 
             Θ(log n) 
             Θ(1) 
 
exercise: where is \sqrt(n) 
 
 
How to compare    
    n^0.5    n log n 
    n^0.5    n^0.5 n^0.5 log n 
              Bigger 
 
How long does the following code take to run 
    for i=1 to n do 
       for j=1 to i do 
          s += (i+j)^2 - (i+j) 
 
O(n^2) 
Θ(n^2) 
 
O(n^3) is true ... but not "tight" 
 
 


