
Lecture 14: 5/19/2009

Announcements: Ps8 out. Ps7, solutions out tomorrow

From last time: Binary Search (assumes the input array A is sorted):

Binary-Search(X,A, low, high):Looks for X in A[low..high]
Start
1.If(low>high) Return(“not found”); // (range of A is empty)
2. Middle ←(low+high)/2;
3. If(A[Middle] = X) Return (Middle)
4. If (A[Middle] < X) low ← Middle+1 // X not in A[1..Middle]
5. If (A[Middle] >X) high ← Middle-1 // X not in A[Middle..high]
6. Binary-Search(X,A,low,high);
End;

To start call Binary-Search(X,A,1,n).

Analysis of Run time:

We can assume that each iteration of the program (not including the recursive call in
the last line), takes constant time (that is, it does not depend on n). Thus to get the big
Theta run time, we only need to count the number of calls.

Let T(n) be the maximum number of calls for an array of size n, not including the final
failure call (if not found).

T(1) = 1
T(n) = T(\lceil n/2\rceil) + 1

Usually ok to ignore ceilings, floors:

T(n) = T(n/2) + 1 // 2^0
 = T(n/4) + 2 = T(n/2^2) + 2 //2^1
 = T(n/8) + 3 = T(n/2^3) + 3 //
 = T(n/2^k) + (k-1)
 ...
 = T(n/n) + (lg n -1)
 = 1 + (lg n -1)
 = lg n

Correctness:
Binary Search is a subtle program and easy to get wrong (many experienced
programmers have implemented it with bugs). To prove the above code is correct we
use computational induction. It is easy to see that if the program returns “Middle” in
line 3 then X is in the array A in position Middle. Trickier is to be sure that if “not
found” is returned in line 1, then X is not in the array. To show this we argue that at
all times we have the following property P:
either X is somewhere in A[low..high], or X is not in A.
Clearly this is true for our initial call where low=1 and high =n (assuming A[1..n] is
the entire array). For each subsequent call, we either update low in line 4, where
X > A[Middle], so we claim X is not in A[1..Middle], so when we set low to
Middle+1 we maintain P. Similarly for the update in line 5 which also maintains P by
lowering high when we know X is not in A[Middle..n].
This is in essence an induction proof on the number of calls to Binary-Search: if true
at the start of call i, then true for the i+1st call (and for the basis, true initially).

EXAMPLE 2: Towers of Hanoi.

We did this.
Tn = 2 Tn-1 + 1 for n ≥ 1
 0 for n=0

Now show that you prove the answer by induction on n (as in the homework)
Claim: The solution to the recurrence above is

 Tn = 2n- 1
 T0= 0 OK; (T1= 1 OK)[(T2 = 3 OK)

Suppose true for n = k.
Tk= 2k - 1.
Want to show true for n = k+1:

T_{k+1} = 2T_k - 1
 = 2(2^k-1) + 1
 =2^{k+1} - 2 + 1
 =2^{k+1} + 1 QED

EXAMPLE 3: Recursion Trees: T(n) = 3 T(n/2) + n2
 T(n) = 1 n ≤ 1

Tree with root n and 3 under each node of half the size. Work at level i
sums all nodes sizes squared so:
 Level 0: n2
 Level 1: 3 *(n/2)^2 = n^2 (3/2^2)
 Level 2: 3^2 * (n/4)^2 = n^2 * (3/2^2)^2
 Level i: n^2 * (3/2^2)^i

The total is n2 (1 + ¾ + (3/4) 2 + (3/4) 3 …) = Θ(n2) (Since ¾ < 1 it goes down as)

Master Theorem

If T(n)= aT(n/b) + Θ (nd) for a,b>0, d≥0, then

T(n) = Θ(nlogb a) if bd < a
T(n) = Θ (nd) if bd > a
T(n) = Θ (nd log n) if bd = a

Idea: as in the example above, we get a tree with logb n levels, and the total work at

each level i is Θ (nd) * ri where r = a/ bd
Thus, if bd < a, r > 1 and the work is increasing as the level increases. The work is
dominated by the number of leaves (final levels work), which is Θ(nlogb a).
 If bd < a, r < 1 and the work is decreasing as the level increases. The work is
dominated by the top, Θ (nd)
If bd = a, r =1 and the work is the same at each level. The number of levels is logb

n, so the total is Θ (nd logb n) = Θ (nd log n) (since b is a constant).

eg:
 T(n) = 4T(n/2) + n Θ (n^2)
 T(n) = 4T(n/2) + n^2 Θ (n^2 log n)
 T(n) = 4T(n/2) + n^3 Θ (n^3)

 Idea: consider a tree of recursive calls. Root (and each node except at the bottom),
has a further calls. Number of calls at level i is ai and problem size at level i is (n/ bi).
Thus the value associated with each problem of that size is Θ (md) where m=(n/ bi).,
thus the value is Θ ((n/ bi).d) = Θ (nd/ bid.)
Since there are ai at level i , the total for level i is: ai Θ (nd/ bid.)= (a/ bd)i Θ (nd)

Thus if bd < a, (a/ bd)i increases as i grows, so dominated by bottom terms
If bd > a, then (a/ bd)i decreases as i grows, so dominated by top term
if bd = a, then (a/ bd)i is always 1, so Θ (nd) at each level, and log n levels.

Counting (Chapter 5)

 n! = number of ways to order n different items
 2^n = number of subsets of n items

 P(n,r) = n!/(n-r)! = n*(n-1)*...*(n-r+1)
 = the number of ways to fill r bins, one
 item per bin, using items drawn from 1,...,n.
 No replacement; an item, once used, is gone.

 C(n,r) = n! / r!(n-r)! = P(n,r)/r!
 = number of r-element subsets from a set of n different items.
 No replacement; an item, once used, is gone. Also n choose r the number of
ways to choose r things from a set of size n.

 product rule = if event A can occur in a ways and, independent of this,
 event B can occur in b ways then the number of combinations
 of ways for A and B to occur is ab.
 (Really just a statement that |A x B| = |A| |B| for finite A, B.)

