
Lecture 18: 6/2/2009 
 

Announcements:. On MyUCD: Ps8,Ps9  solutions, Sample final  
FINAL EXAM: NOTE ROOM CHANGE Monday June 8, 10:30-12:30 6 
Olson, Open Book, 1 double sided sheet of paper for notes. 
 
OH shifts: Me, 12-1 this Thursday (instead of 1-2) 
  Nick: 2-4 Friday (after the review session) 
 
Review Session: Friday 12:10-2, 146 Olson 
============================================================ 
 
Today: o Students evaluate Me  and TA’s                  // 10 mins 
 
o Graph theory  
       o Hints for the final,! 
 
---------------------------------------------------------------------------- 
Graph theory  
---------------------------------------------------------------------------- 
 
1. Notion of a graph  
.................... 
 
Def:   A (finite, simple) Graph G=(V,E) is an ordered pair 
          - where V is a nonempty finite set (the "vertices" or "nodes") 
          - where E is a collection of two-elements subsets of V (the "edges") 
No Parallel edges (at most one edge {a,b}). If we allow them G is a multi-graph 
No self loops (edge {a,a}) 
G is an Undirected graph:  
 
Graphs are used to represent all sorts of things: we already saw for functions and 
relations,  Finite State Machines, and recursion trees, but also for networks (vertices 
are computers/routers, edges are communication lines); road networks 
(cities/intersections, highways/streets); friendships (people, relationship), call graphs 
(functions, who calls who), many, many more … 
 
 
Conventional representation: picture.  
Be clear: the picture is NOT the graph, it is a representation of the graph. 



 
 
          B--- C 
        /  \ /  
      A     D 
 
          B--- D 
        /  \ /  
      A     C 
 
are the SAME graph. 
 
Def:    Two vertices v, w of a graph G=(V,E) are _adjacent_ if {v,w} in E. 
 
Def:    The _degree_ of a vertex d(v) = |{v,w}: w ∈ V| 
 
I like {x,y} for an edge, emphasizing that {x,y} are unordered. 
Will sometimes see xy  or (x,y), but both "look" like the order matters, which it does 
not here (used for directed graphs). 
 
Usually write n=|V|, m=|E| 
 
 
2. Paths in graphs 
.................. 
 
Def: A  path P=(v_1, ..., v_n) in G=(V,E) is a sequence of vertices s.t. 
{v_i,v_{i+1}}∈ E 
     for all i in {1,..., n-1}.   Note: we exclude the trivial path a-b-a that repeats the 
same edge twice. 
 
     A path is said to _contain_ the vertices and to _contain_ the edges {v_i,v_{i+1}. 
     The _length_ of a path is the number of edges on it. 
 
     A  cycle is a path of length 3 or more that starts and stops at the same vertex and 
     includes no repeated vertices apart from the first vertex being the last.  
      
     A graph is _acyclic_ if it contains no cycle. 
      
     A graph G=(V,E) is _connected_ if, for all x,y in V, there is a path from x to y. 



 
 
3. Trees 
........ 
 
Def:     A _tree_ is a connected acyclic graph. 
Def:     A _leaf (of a tree) is a vertex of degree one (or zero if G has only one node).   
        Picture.    
Thm1: Any tree has at least one leaf:  

Proof:start at some vertex v in G. If deg(v)=1 or zero, then done, otherwise, let 
w be adjacent to v, again if w is a leaf, done, otherwise it has degree at least 2, so has 
an adjacent node say x different from v . Repeat this argument until you get to a leaf. 
Since there is no cycle you must eventually get to a vertex that has no additional 
neighbor, and is thus a leaf. 
 
 
 
4. Eulerian and Hamiltonian graphs 
.................................. 
 
Def: A graph G is _Eulerian_   if it there is a cycle C in G that goes through every  
                               edge exactly once.  
 
     A graph G is _Hamiltonian_ if there is a cycle that goes through every vertex 
                                exactly once.  
 
Theorem: (Euler) A connected graph G=(V,E) on ≥ 3 vertices is Eulerian 
 
Iff  every vertex of G is of even degree. 
 
Proof:  -->    Choose some s. A Graph is Eulerian means there is a path that starts at s 
and eventually ends at s, hitting every edge (once).   Put a label of 0 on every vertex.  
Now, follow the path. Every time we enter a vertex or exit a vertex, we increment the 
label. At end of traversing the graph, label(v) = degree(v) and this is even. 
 
        <--    (sketch) If every vertex is of even degree, at least three vertices. Start at s 
and grow a cycle C of unexplored edges until you wind up back at s. You never "get 
stuck" by even-degree constraint.  If every edge explored:Done.  Otherwise, find 
contact point of C and an unexplored edge (exists by connectedness) and grow out 
from there.  Splice together the paths. 



 
So there is a trivial algorithm to decide if G is Eulerian: just check if all its 
vertices are of even degree. 
 
Amazing fact: There is no efficient algorithm known to decide if a graph is 
Hamiltonian.  Easy to do so using a slow algorithm: try all n! orderings of the vertices. 
              (Most computer scientists believe that no such algorithm exists.) 
 
5. Longest and shortest paths 
 
Def: A _shortest path_ between two vertices x and y is a path from x to y such that 
there is no shorter (=fewer edges) path from x to y. (more general versions put 
distances on edges and then we want the path with the smallest sum of distances).  
 
     A _longest path_ between two vertices x and y is a _simple path_ (=no repeated 
     vertices) from x to y. 
 
Claim: There is an efficient algorithm to identify a shortest path between two 
designated vertices in a graph.  (You will learn one in ecs122A and probably ecs60) 
 
Amazing fact: There is no efficient algorithm known to find a longest path from x to 
y.(Most computer scientists believe that no such algorithm exists.) 
 
 
6. Colorability  
............... 
 
Def: A graph  G = (V,E) is *k-colorable* if we can paint the vertices using "colors" 
     {1,...,k} such that no adjacent vertices have the same color. 
 
Def: A graph is bipartite if it is 2-colorable.   In other words, we can partition  
     V into (V1, V2) such that all edges go between a vertex in V1 and a vertex in V2. 
 
Proposition: There is a simple and efficient algorithm to decide if a graph G is 2-
colorable.  Proofs:  Modify DFS.   Or show ad hoc algorithm directly... 
 
Amazing fact: There is no reasonable algorithm known to decide if a graph is 3-
colorable.  
             (Most computer scientists believe that no such algorithm exists.) 
 


