
Lecture 18: 6/2/2009

Announcements:. On MyUCD: Ps8,Ps9 solutions, Sample final
FINAL EXAM: NOTE ROOM CHANGE Monday June 8, 10:30-12:30 6
Olson, Open Book, 1 double sided sheet of paper for notes.

OH shifts: Me, 12-1 this Thursday (instead of 1-2)
 Nick: 2-4 Friday (after the review session)

Review Session: Friday 12:10-2, 146 Olson
==

Today: o Students evaluate Me and TA’s // 10 mins

o Graph theory
 o Hints for the final,!

--
Graph theory
--

1. Notion of a graph
....................

Def: A (finite, simple) Graph G=(V,E) is an ordered pair
 - where V is a nonempty finite set (the "vertices" or "nodes")
 - where E is a collection of two-elements subsets of V (the "edges")
No Parallel edges (at most one edge {a,b}). If we allow them G is a multi-graph
No self loops (edge {a,a})
G is an Undirected graph:

Graphs are used to represent all sorts of things: we already saw for functions and
relations, Finite State Machines, and recursion trees, but also for networks (vertices
are computers/routers, edges are communication lines); road networks
(cities/intersections, highways/streets); friendships (people, relationship), call graphs
(functions, who calls who), many, many more …

Conventional representation: picture.
Be clear: the picture is NOT the graph, it is a representation of the graph.

 B--- C
 / \ /
 A D

 B--- D
 / \ /
 A C

are the SAME graph.

Def: Two vertices v, w of a graph G=(V,E) are _adjacent_ if {v,w} in E.

Def: The _degree_ of a vertex d(v) = |{v,w}: w ∈ V|

I like {x,y} for an edge, emphasizing that {x,y} are unordered.
Will sometimes see xy or (x,y), but both "look" like the order matters, which it does
not here (used for directed graphs).

Usually write n=|V|, m=|E|

2. Paths in graphs
..................

Def: A path P=(v_1, ..., v_n) in G=(V,E) is a sequence of vertices s.t.
{v_i,v_{i+1}}∈ E
 for all i in {1,..., n-1}. Note: we exclude the trivial path a-b-a that repeats the
same edge twice.

 A path is said to _contain_ the vertices and to _contain_ the edges {v_i,v_{i+1}.
 The _length_ of a path is the number of edges on it.

 A cycle is a path of length 3 or more that starts and stops at the same vertex and
 includes no repeated vertices apart from the first vertex being the last.

 A graph is _acyclic_ if it contains no cycle.

 A graph G=(V,E) is _connected_ if, for all x,y in V, there is a path from x to y.

3. Trees
........

Def: A _tree_ is a connected acyclic graph.
Def: A _leaf (of a tree) is a vertex of degree one (or zero if G has only one node).
 Picture.
Thm1: Any tree has at least one leaf:

Proof:start at some vertex v in G. If deg(v)=1 or zero, then done, otherwise, let
w be adjacent to v, again if w is a leaf, done, otherwise it has degree at least 2, so has
an adjacent node say x different from v . Repeat this argument until you get to a leaf.
Since there is no cycle you must eventually get to a vertex that has no additional
neighbor, and is thus a leaf.

4. Eulerian and Hamiltonian graphs
..................................

Def: A graph G is _Eulerian_ if it there is a cycle C in G that goes through every
 edge exactly once.

 A graph G is _Hamiltonian_ if there is a cycle that goes through every vertex
 exactly once.

Theorem: (Euler) A connected graph G=(V,E) on ≥ 3 vertices is Eulerian

Iff every vertex of G is of even degree.

Proof: --> Choose some s. A Graph is Eulerian means there is a path that starts at s
and eventually ends at s, hitting every edge (once). Put a label of 0 on every vertex.
Now, follow the path. Every time we enter a vertex or exit a vertex, we increment the
label. At end of traversing the graph, label(v) = degree(v) and this is even.

 <-- (sketch) If every vertex is of even degree, at least three vertices. Start at s
and grow a cycle C of unexplored edges until you wind up back at s. You never "get
stuck" by even-degree constraint. If every edge explored:Done. Otherwise, find
contact point of C and an unexplored edge (exists by connectedness) and grow out
from there. Splice together the paths.

So there is a trivial algorithm to decide if G is Eulerian: just check if all its
vertices are of even degree.

Amazing fact: There is no efficient algorithm known to decide if a graph is
Hamiltonian. Easy to do so using a slow algorithm: try all n! orderings of the vertices.
 (Most computer scientists believe that no such algorithm exists.)

5. Longest and shortest paths

Def: A _shortest path_ between two vertices x and y is a path from x to y such that
there is no shorter (=fewer edges) path from x to y. (more general versions put
distances on edges and then we want the path with the smallest sum of distances).

 A _longest path_ between two vertices x and y is a _simple path_ (=no repeated
 vertices) from x to y.

Claim: There is an efficient algorithm to identify a shortest path between two
designated vertices in a graph. (You will learn one in ecs122A and probably ecs60)

Amazing fact: There is no efficient algorithm known to find a longest path from x to
y.(Most computer scientists believe that no such algorithm exists.)

6. Colorability
...............

Def: A graph G = (V,E) is *k-colorable* if we can paint the vertices using "colors"
 {1,...,k} such that no adjacent vertices have the same color.

Def: A graph is bipartite if it is 2-colorable. In other words, we can partition
 V into (V1, V2) such that all edges go between a vertex in V1 and a vertex in V2.

Proposition: There is a simple and efficient algorithm to decide if a graph G is 2-
colorable. Proofs: Modify DFS. Or show ad hoc algorithm directly...

Amazing fact: There is no reasonable algorithm known to decide if a graph is 3-
colorable.
 (Most computer scientists believe that no such algorithm exists.)

