
Lecture 8: 4/23/2009

Announcements: Midterm Tues. 5/5: Open book/notes
Ps4 out,Ps3 solutions out;

Formal Languages (Chapter 12): This topic is discussed in much greater
detail in ECS120

Regular Expressions, continued:12.4

 Example 1: write a regular expression for all strings over {a,b} whose
length is divisible by 3.
 ((aub)(aub)(aub))*

 Example 2: write a regular expression for all strings over {a,b} whose
length is NOT divisible by 3.
 (aub)(aub)(aub))*(aub) u
 (aub)(aub)(aub))*(aub)(aub)

 Example 3: write a regular expression for all strings over {0,1}that contain
some '111'.
 (0u1)* 111 (0u1)*

 Exercise 4: write a regular expression for all strings over {0,1} that
contain an even # of 0's and an even # of 1's.

 Hmm...... sounds HARD! Can it be done?!
Suggestion in class to take the union of all strings of length 0,2 and 4 with
an even number of 0’s, 1’s, and then take the * of that. However, doesn’t
quite work.

--
2. FSAs (or DFA, DFM, FSM)(12.5)
--

 Describe pictorially (no actual definition). Machine for each of the 4
examples.

 What they capture: a computer with a finite amount of memory.
For a DFM (Will see DFM, DFA, FSA, FSM where D= deterministic, F=
finite, A = automaton, M = Machine, S = state)
 Make a DFA for each of the languages above.

For an FSA M, L(M) is the language accepted by M. A string x ∈ L(M)
iff on input string x, the machine M ends up in an accepting state.

 Theorem (ecs 120): L is the language of a regular expression
 iff
 L is the language of a DFA

 So now we _know_ that example 4 does have a regular expression, just our
own stupidity not to be able to write it.

 Nice new ways to describe languages: give a DFA.

--
3. Relations (chapter 2)
--

(Change of topics. But do define some relations on
strings, regular languages, and DFAs to tie the
two topics together.)

DEF: A and B sets. Then a *relation* R is subset of A x B. Thus R is a set
of ordered pairs.

R ⊆ A x B

Variant notation: x R y for (x,y) ∈ R

May use a symbol like ~ or < for a relations
 x ~ y if (x,y) ∈ ~

Relations in arithmetic, where A and B are both natural numbers:
 = < ≤ > >=
 | divides

 what about succ, +, * NO: function symbols, not relations (well, succ
could be considered a relation: {(0,1), (1,2), …}

In set theory:

∈, =, ⊆ all are relations (on what types?)
 what about ∅ NO: constant symbol

Relations are useful for things other than numbers and sets and the like:

S = all UCD students for S09
C = all UCD classes for S09
P = all UCD professors for S09

E: “enrolled in” relation ⊆ S x C
s E c (ie, (s,c)∈ E) - s is taking class c

T: teaches relation ⊆ C x P
c T p (ie, (c,p)∈ T) - professor p is teaching class c this term

 Relations of the sort above (“Teaches”, “Enrolled” often used in
databases, Relational Databases store their data as relations)

You can *compose* relations (2.5)

what _should_
 E o T Mean?

 E o T ⊆ S x P S x C C x P -> S x P
 s EoT p if there exists c in C such that s E c and c T p --
 student s is taking some course that p is teaching --
 p is s's teacher this term

What I've just given is the general definition
R ⊆ X x Y
S ⊆ Y x Z then R o S ⊆ X x Z is {(x,z): ∃y in Y xRy and yRz}

DRAW A GRAPH -- and give the directed-graph interpretation of
relations and composition (2.4 in text). Composing relations is called a
Join operation in a database. (Example below, not done in class)

 Students Classes Instructors
 -------- ------- ------------
 John ECS20 Prof. Mar

 Nina Math118 Prof. Hamann

 Till ECS20 Prof. Morrison

 Elizabeth Lin 10 Prof. Samuelson

What _should_ E-1 be?
 Formalize

 if R⊆ X x Y is a relation then R-1 is the relation on Y x X
 where (y,x) ∈ R-1 iff x R y.

More examples:
 Often X = Y is the *same* set
 Relations on natural numbers, real numbers, strings, etc.

 X = set of strings

 x <= y "is a substring of y"

 alpha and beta are regular expressions.
 alpha ~ beta if L(alpha) = L(beta)

T/F: (0u1)* (0u1)* ~ (0 u 1 u 00 u 01 u 10 u 11)* TRUE
 emptystring ~ emptystring* TRUE
 0(0u1)0 ~ 1(0u1)1 FALSE

 M and M' are DFAs.
 M ~ M' if L(M) = L(M')

--
4. Properties of Relations (2.6)
--

Reflexive: x R x for all x
 Symmetric: x R y -> y R x for all x,y
 Transitive: x R y and y R x -> x R z for all x, y, z

if R has all three properties, R is said to be an equivalence relation (2.8)

 Reflexive Symmetric Transitive comments

= on Integers Yes Yes Yes
 (or anything else)

≤ , integers Yes No Yes actually _anti-
symmetric_
 (Define this)
⊆ , sets Yes No Yes anti-symmetric

x E y if x,y RE Yes Yes Yes
L(x) = L(y) languages

x S y if x is a substring Yes No Yes
of y

x R y where x and y are
strings and M is a some
DFA and you go to the Yes Yes Yes
same state on processing
x and y

