
Lecture 8: 4/23/2009 
 

Announcements: Midterm Tues. 5/5: Open book/notes 
Ps4 out,Ps3 solutions out;  
 
Formal Languages (Chapter 12): This topic is discussed in much greater 
detail in ECS120 
 
Regular Expressions, continued:12.4 
 
 Example 1: write a regular expression for all strings over {a,b} whose 
length is divisible by 3.  
      ( (aub)(aub)(aub))* 
 
 Example 2: write a regular expression for all strings over {a,b} whose 
length is NOT divisible by 3.  
       (aub)(aub)(aub))*(aub) u  
       (aub)(aub)(aub))*(aub)(aub) 
 
 Example 3: write a regular expression for all strings over {0,1}that contain 
_some_ '111'. 
       (0u1)* 111 (0u1)* 
 
 Exercise 4: write a  regular expression for all strings over {0,1} that 
contain an even # of 0's and an even # of 1's. 
 
              Hmm......   sounds HARD! Can it be done?! 
Suggestion in class to take the union of all strings of length 0,2 and 4 with 
an even number of 0’s, 1’s, and then take the * of that. However, doesn’t 
quite work. 
  
 
------------------------------------------ 
2. FSAs (or DFA, DFM, FSM)(12.5) 
------------------------------------------ 



 
 Describe pictorially (no actual definition). Machine for each of the 4 
examples. 
 
 What they capture: a computer with a finite amount of memory. 
For a DFM (Will see DFM, DFA, FSA, FSM where D= deterministic, F= 
finite, A = automaton, M = Machine, S = state) 
 Make a DFA for each of the languages above. 
 
For an FSA M, L(M) is the language accepted by M.  A string x ∈ L(M) 
iff on input string x, the machine M ends up in an accepting state. 
 

 Theorem (ecs 120): L is the language of a regular expression 
                    iff  
                    L is the language of a DFA  
 

 So now we _know_ that example 4 does have a regular expression,  just our 
own stupidity not to be able to write it. 

 
 Nice new ways to describe languages: give a DFA.  
 
------------------------------------------ 
3. Relations (chapter 2) 
------------------------------------------ 
 
(Change of topics.  But do define some relations on  
strings, regular languages, and DFAs to tie the  
two topics together.) 
 
DEF: A and B sets.  Then a *relation* R is subset of A x B. Thus R is a set 
of ordered pairs. 
 
R ⊆  A x B 
 
Variant notation:  x R y  for (x,y) ∈ R 



 
May use a symbol like ~ or < for a relations 
                    x ~ y  if (x,y) ∈ ~ 
 
Relations in arithmetic, where A and B are both natural numbers: 
           = < ≤  > >= 
           |   divides 
 
     what about succ, +, *   NO: function symbols, not relations (well, succ 
could be considered a relation: {(0,1), (1,2), …} 
 
In set theory: 

∈,   =, ⊆   all are relations (on what types?) 
           what about ∅  NO: constant symbol 
 
Relations are useful for things other than numbers and sets and the like: 
 
S = all UCD students for S09 
C = all UCD classes  for S09 
P = all UCD professors for S09 
 
E: “enrolled in” relation ⊆   S x C 
s E c  (ie, (s,c)∈ E) - s is taking class c 
 
T: teaches relation ⊆   C x P  
c T p  (ie, (c,p)∈ T) - professor p is teaching class c this term 
 
       Relations of the sort above (“Teaches”, “Enrolled” often used in 
databases, Relational Databases store their data as relations) 
 
You can *compose* relations (2.5) 
 
what _should_  
   E o T    Mean? 



    E o T ⊆  S x P        S x C   C x P -> S x P 
    s EoT p  if there exists c in C such that s E c and c T p -- 
             student s is taking some course that p is teaching --  
             p is s's teacher this term 
 
What I've just given is the general definition 
R ⊆   X x Y 
S ⊆    Y x Z  then R o S ⊆   X x Z is {(x,z): ∃y in Y xRy and yRz} 
 
DRAW A GRAPH -- and give the directed-graph interpretation of  
relations and composition (2.4 in text). Composing relations is called a 
Join operation in a database. (Example below, not done in class) 
 
            Students         Classes         Instructors 
            --------         -------         ------------ 
            John             ECS20           Prof. Mar 
 
   Nina             Math118         Prof. Hamann 
 
            Till             ECS20           Prof. Morrison 
 
            Elizabeth        Lin 10          Prof. Samuelson 
                      
What _should_  E-1 be? 
   Formalize  
    
   if R⊆   X x Y is a relation then R-1 is the relation on Y x X 
   where (y,x) ∈ R-1  iff x R y. 
 
More examples: 
    Often X = Y is the *same* set 
      Relations on natural numbers, real numbers, strings, etc. 
 
    X = set of strings  



    x <= y    "is a substring of y" 
 
    alpha and beta are regular expressions. 
    alpha ~ beta if L(alpha) = L(beta) 
 
 
T/F:   (0u1)* (0u1)*  ~  (0 u 1 u 00 u 01 u 10 u 11)*    TRUE 
       emptystring    ~  emptystring*             TRUE 
       0(0u1)0       ~ 1(0u1)1                    FALSE 
 
    M and M' are DFAs.   
    M ~ M' if L(M) = L(M') 
    
------------------------------------------ 
4. Properties of Relations (2.6) 
------------------------------------------ 
 
Reflexive:  x R x                    for all x 
  Symmetric:  x R y -> y R x           for all x,y 
  Transitive: x R y and y R x -> x R z for all x, y, z 
   
if R has all three properties, R is said to be an equivalence relation (2.8) 
 
 
                       Reflexive      Symmetric    Transitive    comments 
 
= on Integers             Yes            Yes           Yes     
 (or anything else) 
 
≤ , integers              Yes            No            Yes       actually _anti-
symmetric_ 
                                                                 (Define this) 
⊆ , sets            Yes            No            Yes       anti-symmetric 
 
 



 
x E y if x,y RE  Yes  Yes  Yes 
L(x) = L(y)     languages 
 
x S y if x is a substring Yes            No            Yes  
of y 
 
x R y where x and y are 
strings and M is a some                                          
DFA and you go to the     Yes            Yes           Yes      
same state on processing                                         
x and y 
 
 
 
 


