
Notes for ECS 20, Lecture 3 – April 7, 2009 –  

 

Today:   o Sentential Logic (continued) 

Review: 

 Definition of a well formed formula (for sentential logic, over same set of proposition 
symbols P) is:   

Equivalent to a Propositional Formula (in the text): truth depends on the values of its logical 
variables. 

 
 “Order of Precedence”  
 

¬      binds most tightly 
^ 
v 
-> 
<->  binds least tightly 
Parenthesis can change the default order.  Within a given precedence, the usual convention is 
that things group right-to-left. 
 
For example, C v ¬A ^ B -> B  Is equivalent to: (C v ((¬A) ^ B) ) -> B 
 
 

1. We can associate any WFF to a tree where the leaves are the proposition symbols and 
constants 0 and 1 and the internal nodes are marked with logical operators. Given a 
truth assignment, which was described last time, you can propagate up truth value to 
every node.  We showed how to do this for the example above.   

                           
Some practice designing formulas …. and circuits, too 

 
Exercise 1 Who won the fight?  
 
Two fighters, A and B. Three judges, each votes “0” if he thinks A won and “1” if he things B won. We 
want to create a Boolean formula that computes who won, according to majority vote. 
 
Majority(P,Q, R) = 1 iff at least two of P,Q,R are 1, and 0 otherwise. 
 
 
 
 
First write out a truth table for what you want: 
 



P Q R Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 
 
 
Disjunctive normal form (DNF) – The formula is the OR of terms, and each term is the AND of 
variables or their complements.  We can take ANY truth table and “read it out” as DNF. Above, 
we get 
 

(¬P)QR v P(¬Q)R v PQ(¬R) v (PQR) 
 

We can simplify this a bit using: 
QR v PR v PQ  

 
 

 
Exercise 2: Find WFF that is 1 if exactly one of A, B, C, and D, are true.  (NOT DONE IN CLASS) 

 
For exactly one of these variables to be true, we need that at least one of the variables is true and 
at most one of the variables is true. The first is easy to translate into sentential logic: 
 

A v B v C v D 
 
The second is a little trickier: we want to say if A is true, for example than B must be false, that 
is, A  ¬B; and A  ¬C, and so forth: 
 
(A  ¬B) (A  ¬C) (A  ¬D)  (B  ¬A) (B  ¬C) (B  ¬D)  (C  ¬A) (C  ¬B) (C  
¬D) (D  ¬A) (D  ¬B) (D  ¬C). 
 
So and this formula and the prior one and you are done.  More generally, to say that exactly one 
of X1, …, Xn are true, we could use a formula of the form 
 

                  (   ∨i   Xi   )  ∧   ∧i≠j ( Xi  →    ¬Xj ) 
 
 

Logical completeness.   By virtue of the “DNF algorithm” that turns any truth table to a WFF 
that corresponds to the functionality, we know that any Boolean formula—or any truth table—
can be represented using only the logical connectives {^,v, ¬}.  We say that this set of 
connectives are logically complete. 



 
In fact, we can use a smaller set of connectives, eliminating or by using the identity:  

      
     P ∨ Q    ≡    ¬(¬P  ^  ¬Q) 
 

which is known as DeMorgan’s law.  We could, alternatively, eliminate and by using the 
DeMorgan law: 
 

P ^ Q    ≡    ¬(¬P  ∨  ¬Q). 
 

So we have show that 
 
• ^ & ¬    are  logically complete, 
• v & ¬    are logically complete.   In addition,  
• NAND, all by itself,  is logically complete, because we can rewrite ^ and ¬  using NAND 

(tie the inputs of the NAND together to make an inverter) and  
• NOR, all by itself, is logically complete, because we can rewrite v and ¬  using NOR (tie 

the inputs of NOR together to make an inverter). 
 
Exercise 3: Find a circuit to add up two 4-bit binary numbers. 
 
Example: add 1011 (11) to 0110 (6) to get 10001 (17) showing sums and carries. 
 
Here is a diagram for how to use a full adder, and then a circuit for the adder.   (In class we first 
wrote out the truth table for the full adder.) Note that Ai and Bi are the bits of the two inputs, Si 
is the current Sum bit, and Ci  is the carry to go to the next place. 

 

 

 
 



 
 
Tautologies, satisfiability, and logical equivalence 

 
Definitions: 

 
Given WFF’s α and β,  
 

• α is a tautology if α  is True for all truth assignments t of its variables 
• α is satisfiable if there exists a truth assignment t s.t. α is true. 
• α is a contradiction if α is False for all truth assignments t. 
• α and β are (logically) equivalent if t(α)=t(β) for all truth assignments t. 

 
Gates Diagrams: 
 

Type Distinctive shape Truth table 

AND 

 

 

INPUT OUTPUT 

A B A AND B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

OR 

  

INPUT OUTPUT 

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

NOT 

 
 

INPUT OUTPUT 

A NOT A 

0 1 

1 0 

NAND 

 

INPUT OUTPUT 

A B A NAND B 

0 0 1 

0 1 1 

1 0 1 

1 1 0 



 

1 0 1 

1 1 0 

NOR 

 

 

INPUT OUTPUT 

A B A NOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

XOR 

 

 

INPUT OUTPUT 

A B A XOR B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 


