
Notes for ECS 20, Lecture 3 – April 7, 2009 –

Today: o Sentential Logic (continued)

Review:

 Definition of a well formed formula (for sentential logic, over same set of proposition
symbols P) is:

Equivalent to a Propositional Formula (in the text): truth depends on the values of its logical
variables.

 “Order of Precedence”

¬ binds most tightly
^
v
->
<-> binds least tightly
Parenthesis can change the default order. Within a given precedence, the usual convention is
that things group right-to-left.

For example, C v ¬A ^ B -> B Is equivalent to: (C v ((¬A) ^ B)) -> B

1. We can associate any WFF to a tree where the leaves are the proposition symbols and
constants 0 and 1 and the internal nodes are marked with logical operators. Given a
truth assignment, which was described last time, you can propagate up truth value to
every node. We showed how to do this for the example above.

Some practice designing formulas …. and circuits, too

Exercise 1 Who won the fight?

Two fighters, A and B. Three judges, each votes “0” if he thinks A won and “1” if he things B won. We
want to create a Boolean formula that computes who won, according to majority vote.

Majority(P,Q, R) = 1 iff at least two of P,Q,R are 1, and 0 otherwise.

First write out a truth table for what you want:

P Q R Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Disjunctive normal form (DNF) – The formula is the OR of terms, and each term is the AND of
variables or their complements. We can take ANY truth table and “read it out” as DNF. Above,
we get

(¬P)QR v P(¬Q)R v PQ(¬R) v (PQR)

We can simplify this a bit using:
QR v PR v PQ

Exercise 2: Find WFF that is 1 if exactly one of A, B, C, and D, are true. (NOT DONE IN CLASS)

For exactly one of these variables to be true, we need that at least one of the variables is true and
at most one of the variables is true. The first is easy to translate into sentential logic:

A v B v C v D

The second is a little trickier: we want to say if A is true, for example than B must be false, that
is, A  ¬B; and A  ¬C, and so forth:

(A  ¬B) (A  ¬C) (A  ¬D) (B  ¬A) (B  ¬C) (B  ¬D) (C  ¬A) (C  ¬B) (C 
¬D) (D  ¬A) (D  ¬B) (D  ¬C).

So and this formula and the prior one and you are done. More generally, to say that exactly one
of X1, …, Xn are true, we could use a formula of the form

 (∨i Xi) ∧ ∧i≠j (Xi → ¬Xj)

Logical completeness. By virtue of the “DNF algorithm” that turns any truth table to a WFF
that corresponds to the functionality, we know that any Boolean formula—or any truth table—
can be represented using only the logical connectives {^,v, ¬}. We say that this set of
connectives are logically complete.

In fact, we can use a smaller set of connectives, eliminating or by using the identity:

 P ∨ Q ≡ ¬(¬P ^ ¬Q)

which is known as DeMorgan’s law. We could, alternatively, eliminate and by using the
DeMorgan law:

P ^ Q ≡ ¬(¬P ∨ ¬Q).

So we have show that

• ^ & ¬ are logically complete,
• v & ¬ are logically complete. In addition,
• NAND, all by itself, is logically complete, because we can rewrite ^ and ¬ using NAND

(tie the inputs of the NAND together to make an inverter) and
• NOR, all by itself, is logically complete, because we can rewrite v and ¬ using NOR (tie

the inputs of NOR together to make an inverter).

Exercise 3: Find a circuit to add up two 4-bit binary numbers.

Example: add 1011 (11) to 0110 (6) to get 10001 (17) showing sums and carries.

Here is a diagram for how to use a full adder, and then a circuit for the adder. (In class we first
wrote out the truth table for the full adder.) Note that Ai and Bi are the bits of the two inputs, Si
is the current Sum bit, and Ci is the carry to go to the next place.

Tautologies, satisfiability, and logical equivalence

Definitions:

Given WFF’s α and β,

• α is a tautology if α is True for all truth assignments t of its variables
• α is satisfiable if there exists a truth assignment t s.t. α is true.
• α is a contradiction if α is False for all truth assignments t.
• α and β are (logically) equivalent if t(α)=t(β) for all truth assignments t.

Gates Diagrams:

Type Distinctive shape Truth table

AND

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

OR

INPUT OUTPUT

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

NOT

INPUT OUTPUT

A NOT A

0 1

1 0

NAND

INPUT OUTPUT

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

1 0 1

1 1 0

NOR

INPUT OUTPUT

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

XOR

INPUT OUTPUT

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

