
Lecture 7: 4/21/2009 
 

Announcements: Ps4 out today, 
Ps3 solutions out tomorrow;  
 
Formal Languages (Chapter 12): This topic is 
discussed in much greater detail in ECS120. 
 
0 is both a character and a string: 0!"  
! is only a string it is not a character. 
01 is likewise a string, it is not a character. 
 
Language – A set of strings, all over the same alphabet. 
 

{0,1}! =  
 
This is a language. It is also an alphabet. 
All of the following are examples of languages: 
 

*{ ,00,01,10,11,0000,0001 } { :  is even}L x x!= = "#L  
{1 : p is prime} {11,111,11111,1111111, }P

L = = L  
*{ {0,1} :  x represents a prime number, no leading zeroes,

                         written in binary}

   ={10,11,101,111,1011}

L x= !

 

L={dog, cat, fish} 
 
Languages can be finite or infinite.   
 
Languages are sets (of strings), so set operators apply to languages.  For 
example: 
 



1

2

1 2

1 2

1 2

{dog,cat,fish}

{dog,frog}

L 4

L \ 2

L 3

L

L

L

L

L

=

=

! =

=

" =

 

 
The concatenate function can be lifted to apply to languages; when L1 and L2 
are languages, L1  L2  is defined as all the combinations of a string from 
L1followed  by a string from L2.  That is, 
 
1 2 1 2 1 2

{ | , }L L L L xy x L y L= = ! !o  
 
With the set we have written above, 
1 2

{dogdog,dogfrog,catdog,catfrog,fishdog,fishfrog}L L =  
 
True or False: ∅  is a language.   
True – all its elements are strings (that is, all 0 of them). 
 
L∅  = ∅ L =∅   
 
{! }  is also a language – the singleton language containing just the empty 
string.   Clearly 
 
{ }L L! =  as 
x x x! != =  
 
Student question:: is !  in every language?  
Answer,  No, we can choose to have it in a given language  or not. 
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We can write L2 for L L, and L3 for L L L, etc.  For the example just given, 
when L is all the even length strings of 1’s, what is L2 and L3  .  Just L.  
 
True or False: if L contains the empty string, then LL’ contains all of L’.   
True. 



 
Taking it a step further, we can represent all the strings formed by 

concatenating strings from the  language as 
*
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In order for that definition to make sense, we need to define 0

L .  0 { }L !=  is 
a convenient way to do this, since then, L* always contains  the empty sting. 
Also, then Lm+1  = LmL works even when m=0. 
 
Say L={dog,cat}.   Then L* ={ ε, cat, dog, catcat, catdog, dogcat, dogdog, 
…} 
 

*{0,1} { ,0,1,00,01,10,11,000 }!= L  
 
Just what we said earlier, but now seen in a more general light. 
 
Why are computer scientists interested in languages? 
 
We can imagine a model for a computer program with an input of  a string 
X.  We define the language associated with the program by saying that 

says "yes"( ) x L M X! "  
 

 
That is to say, the computer program could decide if an input was part of the 
language.  In this way, Languages correspond to decision questions.  For 
example, a computer could take the input of a language X, and decide if the 
string represented by X is prime. It could also match a question more 
naturally about a language: is X a valid C program (then M is a compiler), or 
is X a valid sentence in English? 

M X 

yes 

no 



 
 
We can illustrate this as follows: 

 
The program is splitting the universe into two sets: those it says “yes” to 
(they are in the language) and those that it says “no” to (they are not in the 
languge). 
 
When the language L is finite, it is conceptually easy to write a program to 
decide it: just look it up in a table.  
 
Other languages seem easy, too.  For example,  
 

1
{1 :  is even}i

L i=  is an “easy” language to make a machine to decide. One 
sense in which it is easy is that there’s a short piece of notation that a 
machine could interpret that would describe that language. The short piece 
of notation I have in mind is this:  *(11)   . This notation is supposed to mean 
“the string 11, repeated any number of times”. 
 

2
{1 :  is prime}P

L p=  is a much harder language to describe. It doesn’t 
seem like we could describe it by a short string using symbols like 
concatenation and union and this star operator. The set of C programs or 
English sentences is even harder to describe. 
 
 
 
 

M 

*{0,1}X !  

Yes, X is 
prime 

No, X is 
not prime 

L = prime 

c

L  *!  



Regular Languages (12.4) 
 
We will consider the kinds of languages that can be described using the 
following special symbols:  
( )  * U o  
 
We also allow symbols from some underlying alphabet, and the empty string 
symbol.   What we have just described is the vocabulary we will use for 
regular expression of languages.  The “meaningful” strings over these  
symbols denote language according to natural rules: For regular expressions 
α and β, we can define  languages of more complicated regular expressions: 
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Also, the language associated with a symbol from the alphabet denotes that 
singleton language, and the empty string symbol denotes that singleton 
language. 
 
We can use this more specifically to describe some languages with nice 
compact expressions.   In our earlier example, (11)* denotes the language: 

1

* *({1} {1}) {11} L= =o  
 
Here’s another example:  
 

* *0(0 1) 0 { {0,1} :  x starts and ends with a "0" and x 2}x! = " #  
 
If we didn’t write the part about the length of x then the right hand side 
would include the string 0 but the left-hand side would not. 
 
 
What if we wanted to make a regular expression for a binary string that 
started and ended with the same character, or with no character at all? That 
would be  
 

* *1 1(0 1) 1 0 0(0 1) 0! " " " " " "   



 
Formally, given an alphabet Sigma, the following are the regular 
 expressions over Sigma: 
 
 -a, for all a  ∈ ∑  
 - ε 
 -∅ 
 -(x o y), (x u y), (x*)  for any regular expressions x,y  
 
 Omit parenthesis with the understanding that o binds most strongly, 
 then *, then u, and things group left-to-right,  
 
 L(R) - the language of a regular expression R - defined 
 recursively in the natural way. 
 
 
 Exercise: write a  regular expression for all strings over {0,1} 
       that contain an even # of 0's and an even # of 1's. 
              Hmm......   sounds HARD! 
              Can it be done?!   
  
 
 
 


