Problem Set 7 – Due Monday, May 19, 2009, 3:15

- 1. For each definition below is it a function?, and give its range.
 - a) $f(x) = x^2$, the domain and co-domain of f are the reals.
 - b) $g(x) = \lceil x \rceil,$ the domain and co-domain of g is the reals.
 - c) $h(x) = x^{.5}$, the domain and co-domain of h are the reals.
 - d) $f \circ g(x)$
- 2. Prove that a function $f: A \leftarrow B$ is invertible iff f is 1-1 and onto .
- 3. Suppose $f(x) = \Theta(n^3)$ and $g(x) = O(n^2)$ What can we say about the following in terms of big O and Θ terms?
 - a) $f(x) \times g(x)$
 - b) f(x) + g(x)
 - c) $f \circ g(x)$
- 4. Show that the function Fibo(n), which returns the *nth* fibonacci number, is in $O(2^n)$. Hint, use induction.
- 5. We proved that the positive integers were equinumerous with all integers (and with the rationals). Now let A be the odd positive integers. Show that A is equinumerous with \mathbb{N} , and thus that A is equinumerous with \mathbb{Q} .