
ECS 222A: Algorithm Design and Analysis Handout ??
UC Davis — Charles Martel January 24, 2012

Problem Set 2—Due Friday , February 3, 3:45PM

(22) Problem 1. Let d[i, v] be defined to be the length of the shortest simple path from v to t
that uses at most i arcs (d[i, v] is infinity if no such path exists). In our discussion of the
Bellman-Ford shortest path algorithm (a similar approach is also discussed in section 6.8 of
the book), we argued that if G had no negative cycles, then after iteration i of the main loop,
M [v] ≤ d[i, v].

Even if G has negative cycles, we can still sensibly talk about the shortest (not necessarily
simple) path from v to t using i or fewer arcs, and we let d′[i, v] denote the shortest path
from v to t using at most i arcs (which may have cycles in it).

For the following, assume that G has negative cycles, and we consider the Bellman-Ford
algorithm we described.

a) Is it still true that after iteration i of the main loop, M [v] ≤ d[i, v] for all v? Give a proof
or a counter-example.

b) After iteration i of the main loop, is M [v] ≤ d′[i, v] for all v? Give a proof or a counter-
example.

(12) Problem 2. We noted that one possible approach to implementing the Ford-Fulkerson al-
gorithm is to find for each Gf the path P that can send the most additional flow from s to t.
Describe how to modify Dijkstra’s algorithm to find such a path P (in the book’s notation,
we find the path P such that bottleneck(P, f) is maximum). Discuss the running time of your
solution to find P. Note that you are not being asked to analyze how many such paths the
flow algorithm will need to find.

(22) Problem 3. Describe how to modify the Ford-Fulkerson algorithm (using BFS to find aug-
menting paths) if we add the restriction that for each arc (i,j) there is a lower bound lij ≥ 0
such that the flow in arc (i,j) cannot be lower than lij (you should assume an initial feasible
flow, where, the flow f(i, j) on each arc satisfies lij ≤ f(i, j) ≤ cij in addition to the balance
constraints).

Justify the correctness of your algorithm by proving a version of the max-flow min-cut theorem
for this setting (in particular, what is the capacity of a cut here?)

Explain why in this setting it may be tricky to find a feasible flow.

Extra credit (10): Describe how to find an initial feasible flow.

(18) Problem 4 Consider the better method of finding augmenting paths discussed in class to
improve the capacity scaling algorithm to O(mn) per scaling phase, and similar to a method
used in 7.4 as part of the preflow-push algorithm.

Prove the claim we made that the distances of the nodes to t never go down. In particular,
prove that when we execute relabel(v), d(v) always increases.

(26) Problem 5 Problem 7 page 417. In addition to the problem given, suppose that you can’t
meet the requirements for L. Find the smallest integer value L′ such that all the clients can
be connected to a base station.


