The Expected Complexity of Prim’s Minimum Spanning
Tree Algorithm

Chip Martel

Dept. of Computer Science

University of California
Davis, CA 95616

martel@cs.ucdavis.edu

May 15, 2001

Abstract

We study the expected performance of Prim’s minimum spanning tree (MST) algo-
rithm implemented using ordinary heaps. We show that this implementation runs in
linear or almost linear expected time on a wide range of graphs. This helps to explain
why Prim’s algorithm often beats MST algorithms which have better worst-case run
times.

Specifically, we show that if we start with any n node m edge graph and ran-
domly permute its edge weights, then Prim’s algorithm run’s in expected O(m +
nlognlog(2m/n)) time. Note that O(m + nlognlog(2m/n)) = O(m) when m =
Q(nlognloglogn).

We extend this result to show that the same expected run times apply even when
an adversary can select the weights of m/logn edges and the possible weights of the
remaining edges (which are then randomly assigned).

1 Introduction

Finding a minimum spanning tree (MST) is a classic problem which has extensive appli-
cations to a variety of settings. There is a vast literature extending back to the papers of
Kruskal and Prim in the 1950’s [Pri57, Kru56] and continuing with many improved algo-
rithms including Fredman and Tarjan’s Fibonacci heap implementation of Prim’s algorithm
[FT87], Gabow, Galil, Spencer and Trajan’s nearly linear time algorithm [GGST86], and the
recent expected linear time algorithm of Karger, Klein and Tarjan [KKT95] (an extensive
discussion of MST algorithms is given in [MS94]). However, the range of worst case run
times of these algorithms is actually fairly small: for a graph with m edges and n nodes
any algorithm must take {2(m) time and even the oldest algorithms take O(mlogm) time
if implemented using standard data structures (we assume throughout that our graph is
connected so m = Q(n); otherwise we can always start by finding the connected components
in linear time and then find the MST in each component).

Since the gap between the best and worst algorithms is only a log factor, practical perfor-
mance may not be predicted well by worst case asymptotic run times. In particular, constant
factors and performance on typical problems is likely to be important. The experimental
study of MST algorithms by Moret and Shapiro [MS94] supports this view. Their experi-
ments suggest that Prim’s algorithm implemented using ordinary heaps is the best algorithm
for dense random graphs and is competitive with other algorithms in most settings. In this
paper we analyze the expected performance of Prim’s algorithm. We show that if we start
with an arbitrary graph and then randomly permute the edge weights, then Prim’s algorithm
using ordinary heaps runs in expected O(m +nlognlog(l+m/n)) time. We also show that
this expected run time holds even if an adversary gets to select the graph topology, the set
of possible edge weights, and the actual weights of m/logn edges, as long as the remaining
edge weights are assigned randomly.

Note that O(m +nlognlog(l+m/n)) = O(m) as long as m = Q(nlognloglogn). Thus
this implementation runs in expected linear time except on sparse graphs.

This behavior was suggested by Moret and Shapiro and by Noshita [Nos85]. Noshita
proved an almost identical result for Dijkstra’s algorithm except that he assumed the edge
weights were independent, identically distributed random variables (which is almost the
same as a random permutation of the edges for the MST setting). Our proof uses the same
general approach as Noshita’s, and our main technical lemmas 2.1 and 2.2 are analogous
to results he proved for Dijkstra’s algorithm. However, our details are somewhat different
due to the differences between Prim’s and Dijkstra’s algorithms, and due to the differences
in our models of random edge weights. Our paper also gives a clearer and more general
characterization of the graphs for which both the MST and shortest path results apply.

2 Expected new minimums for Prims

Our analysis is for the following implementation of Prim’s algorithm. For each vertex v not
yet in the tree we keep a value near(v), the cheapest edge weight connecting v to a vertex
in the tree, and store the near values in a min-heap.

Algorithm Prim-Heap

We start by initializing our tree T to contain an arbitrary vertex s.
For each neighbor u of s set near(u) to w(u, s), the weight of the edge (u, s).
All other vertices have their near value set to infinity.

Now the algorithm adds the other n — 1 vertices as follows:

(1) Find the vertex v not in T with minimum near value;

(2) For each neighbor u of v,
if (w(u,v) < near(u) and u not in T') then near(u) < w(u,v);

(3) Add v to T}

The running time of Prim-Heap is dominated by steps (1) and (2). Step (1) is done using
a delete min operation in O(logn) time, (2) requires looking at each neighbor. Whenever
near is updated a decrease-key operation is used which takes O(logn) time. Thus the total
worst case time is O(nlogn) for step (1) and O(mlogn) for step (2), making step (2) the
dominant step for connected graphs. Despite this superlinear worst case behavior, this
algorithm exhibits linear behavior for dense random graphs [MS94].

An explanation of this behavior is given in [MS94, Nos85]. If a vertex u has degree d and
the neighbors of u are added to 7" in a random order, then the first neighbor added to T'
will always cause a decrease key, the second will cause a decrease key half the time (when its
weight is smaller than the weight of the first one added), the third one a third of the time,
.... Thus the expected number of decrease keys is:

Eldecrease — keys] <1+1/2+...4+1/d = Hy (1)

Since Hy, the dth harmonic number, is well approximated by log,(d), they argue that one
should expect O(log,(d)) decrease-key operations for a vertex with degree d over the course
of the algorithm. The above discussion assumes the neighbors of u are added so that their
weights form a random permutation. However, in analyzing Prim’s algorithm we have to be
a little careful since the order in which the neighbors of a vertex are added does depend on
both the graph topology and their weights. Below we give a formal justification for this run
time analysis and show this holds for any graph topology (random or not) as long as the
edge weights are randomly assigned (in fact our analysis will hold even if an adversary can
choose the weights of up to m/logn edges.)

For our analysis let G be an arbitrary undirected graph with a designated vertex s which
will be the first one added to the tree. We start by proving a key technical lemma which
shows that until u is added to T, the order u's neighbors are added to T is independent of
the weights of the edges incident to wu.

We define GG, to be the graph we obtain if we take G and modify it by changing the
weights of all edges incident to u so they are larger than any other edge in the graph.

Lemma 2.1 Let G be an undirected graph, s an arbitrary start node and u an arbitrary
verter in G. When we run Prim-Heap on G, using start node s, let x1,xs,...,...,x) be the

3

neighbors of u which are added to T before u is addd to T. The indices indicate the order
they are added to T.

Let H be any graph obtained by taking G and modifying the weights of the arcs incident
to u. When we run Prim-Heap on H using start node s, if r neighbors of u are added to T
before u is added, those r neighbors added must be 1, T, ..., x, (with r < k) and they are
added in that order.

Proof First note that if removing v doesn’t disconnect G, u will be the last vertex added
to T in G, and k is the degree of u. If removing u does disconnect G, then u will be added
after all other vertices in the connected component which contains s in the graph resulting
from removing u.

Now consider Prim-Heap running on H and on G,. Note that the near values depend
only on the edges incident to vertices which are already in T. Thus until u is added to 7',
the near values of every vertex except u are identical for both H and G,. Thus until u is
added to T the algorithm will make the same choices of which vertices to add next in step
(1) regardless of the weights of u's incident edges. O

Lemma 2.2 Let G be an arbitrary undirected graph with a start vertexr s. If we take any
vertex u of degree d and randomly permute the weights of the edges incident to u to create a
new graph GP, then when we run Prim-Heap on GP using start vertex s, the expected number
of decrease keys to update near(u) is at most Hy.

Proof

We only update near(u) before u is added to T. By lemma 2.1, until » is added to T
the neighbors of u are added to T in a fixed order which is always a prefix of 1, xo, ..., T,
(independent of the weights of u's incident edges).

In GP, each relative ordering of the weights assigned to the edges (z1, u), (z2,u), ... (zx, u)
is equally likely, and a random permutation will make the jth value smaller than the first
j — 1 values with probability 1/j. Thus the expected number of updates to near(u) is at
most:

141/2+...+1/k = H, < H, 2)

The above result about random permutations is well known and is proved in [Nos85].
Note that this actually overestimates the total number of updates since we assume all &k
neighbors are added prior to u being added and we ignore possible duplicate weights among
u's neighboring edges which would also reduce the number of updates.

O

Theorem 2.1 Let G be an arbitrary undirected connected graph with n vertices and m edges.
We pick the start vertex s and then the edge weights in G are randomly permuted to form GP.
When we run Prim-Heap on GP, starting with vertez s, the expected number of decrease-keys
is at most nHy < nlog(2m/n)) where d = 2m/n.

Proof Let di,ds,...,d, be the degree of the vertices in G. Each vertex satisfies the
properties of Lemma 2.2, so the expected number of decrease-keys for vertex 7 is < Hy,. The

4

total number of expected decrease-keys is the sum of the expected number for each node, so
Y Hy < nHy < nlog(2m/n). The first inequality uses the fact that Y7 ; d; = 2m and
that the sum of the logs is maximized when each element in the sum (here the d; values) is
equal to the average.

O

To analyze the entire algorithm’s running time, recall that the total time is O(m+nlogn+
D) where D is the time for decrease-keys. Each decrease-key takes O(logn) time. Thus
we get a total expected running time of O(nlog(m/n)logn) for the decrease-keys. When
m = nlogn this is O(nloglognlogn) and for m = nlognloglogn it is O(n(loglogn +
logloglogn)logn) = O(m). In general if m = Q(nlognloglogn) the expected work for
decrease-keys will be O(m) and thus the overall algorithm runs in expected O(m) time which
is optimal.

As Moret and Shapiro observed [MS94], this linear expected performance on dense ran-
dom graphs helps to explain why normal heaps tend to outperform Fibonacci heaps in these
settings. Though Prim’s with Fibinacci heaps has better worst case performance than or-
dinary heaps on dense graphs (O(m) versus O(mlogn)), our analysis shows both take
expected O(m) time on dense graphs with random edge weights. Since ordinary heaps have
smaller constants for the extract-min operation it is not surprising that experiments usually
show ordinary heap implementations as faster for this setting. A more extensive analysis
of this is given in [GT96] (though their focus is on Dijkstra’s algorithm, the analysis is still
relevant to Prim’s algorithm).

3 Other Settings

The prior analysis assumed all the edge weights were distinct. We now consider the case
where there can be duplicate edge weights. Suppose that the edge weights are independent,
identically distributed (iid) random variables. The operation of Prim’s algorithm only de-
pends on the relative size of the weights not their values. Thus we get results analogous to
lemma 2.2 and Theorem 2.1: if the edge weights incident to a vertex u of degree d are idd
random variables, then the expected number of updates to near(u) is O(logd) and if all edge
weights in the graph are iid random variables, then the total number of expected updates is
O(nlog(2m/n)).

Of course in the case of iid random variables there may be duplicate edge weights which
will reduce the number of updates to near.

The prior results show that Prim-Heap has good expected performance when the edge
weights are independent of the topology. However, it is easy to imagine settings where the
edge weights would depend on the topology (e.g. all arcs connected to a given node are
expensive, there are few arcs between nodes which are far apart and they are all expensive,
...). It is worth noting however, that the results of Theorem 2.1 will still apply as long as
only a few arcs are correlated with the topology.

In fact, we can prove the following more general theorem. We show that as long as the
final step of graph construction is a random assignment of most of the edge weights, our
results apply even when an adversary can specify a significant portion of the graph.

Theorem 3.1 For any vertex size n, let G be an n-vertex graph constructed as follows: an
adversary begins by choosing,
(i) m, the number of edges in G
(11) which edges are in G;
(111) the weights of m/logn edges in G;
(iv) a multiset W containing m — m/logn values;
(v) the start vertex s;
Now, (vi) the remaining edge weights are set by selecting values uniformly at random
from W (this selection can be either with or without replacement).

The expected running time of Prim-Heap on G using start vertex s is O(m-+nlognlog(2m/n)).

Proof

If each of the m/logn edges set in step (iii) causes a decrease-key operation, the total
time for them is m/logn x O(logn) = O(m). For the remaining edges we now show that
the expected work associated with them matches the analysis in theorem 2.1.

Lemma 2.1 still applies to any vertex in G (since it applies to any weight assignment).
Thus for any node u, until u is added to T its incident arcs with weights set in step (vi)
are added in a fixed order, so the analysis of lemma 2.2 applies to them, and the bound of
theorem 2.1 applies to the number of updates due to edges set in step (vi). Thus the total
expected time is no worse than O(m + nlognlog(2m/n)). O

This theorem suggests that we can expect good expected performance by Prim-Heap
except in fairly pathological settings.

4 Dijkstra’s Algorithm

Dijkstra’s single source shortest path algorithm is structurally quite similar to Prim’s al-
gorithm. As noted earlier, Noshita [Nos85] proved expected run time results for Dijkstra’s
which are quite similar to lemma 2.2 and theorem 2.1 (and his proof uses a result very
similar to lemma 2.1). His analysis is for the case where the weight of each edge is an iid
random variable, but as in our analysis, this can be extended to settings where the edge
weights are randomly permuted. Because lemmas 2.1 and 2.2 both apply to Dijkstra’s al-
gorithm, it is also easy to prove an analogue of theorem 3.1 which shows that even if an
adversary constructs a graph as in that theorem, Dijkstra’s algorithm will still run in ex-
pected O(m + nlognlog(2m/n)) time. In fact, for directed graphs, we can even allow the
adversary to choose a multi-set of values for the unset edges entering each vertex (thus for a
vertex u, the adversary selects a set of values for the remaining edges entering u, and these
values are now randomly assigned).

5 Acknowledgements

This work was partly supported by NSF grant 0085961. I’d like to thank Eric Key for some
useful results on repeats. I'd also like to thank Matt Levine and Andrew Goldberg for some
helpful pointers.

References

[FT87]

[GGSTS6]

[GT96]

[KKT95]

[Krub6]

[MS94]

[Nos85]

[Pri57]

M. Fredman and R.E. Tarjan. Fibonaci heaps and their use in improved network
optimization algorithms. Journal of the A.C. M., 34:596-615, 1987.

H. Gabow, Z. Galil, T. Spencer, and R. Tarjan. Efficient algorithms for find-
ing minimum spanning trees in directed and undirected graphs. Combinatorica,
6:109-122, 1986.

A. Goldberg and R.E. Tarjan. Expected performance of dijkstra’s shortest path
algorithm. Technical Report 96-062, NEC Research Institute, June, 1996.

D. Karger, P. Klein, and R. Tarjan. A randomized linear-time algorithm for
finding a minimum spanning tree. Journal of the A.C.M., 42:321-328, 1995.

J.B. Kruskal. On the shortest spanning tree of a graph and the traveling salesman
problem. Proceedings of the American Math society, 7:48-50, 1956.

B. Moret and H. Shapiro. An empirical assessment of algorithms for constructing
a minimum spanning tree. DIMACS Series in Discrete Math and Theoretical CS,
15:99-117, 1994.

K. Noshita. A theorem on the expected complexity of dijkstra’s shortest path
algorithm. Journal of Algorithms, 6:400-408, 1985.

R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389-1401, 1957.

