ECS 222A: Algorithm Design and Analysis Handout ??
UC Davis — Charles Martel Dec. 11, 2000

Sample Final Exam Solutions

Instructions:

Please write clearly and succinctly; be sure to give an overview before plunging into details

1 Scheduling [20 points]

Suppose that you have n unit length jobs to schedule on m processors. Typically n >> m. The ith job has
a list L; of the processors on which it can be run. Each job 7 is to be assigned to exactly one processor on
its list LZ

Multiple jobs can be assigned to the same processor, however, each processor j has a job limit P; which is
the maximum number of jobs that can be assigned to processor j.

(a) Describe an efficient algorithm which either finds a legal assignment of all jobs or determines that no such
assignment exists. Be sure to justify the correctness of your solution algorithm (Hint: greedy and dynamic
programming solutions are unlikely to be correct).

Use a flow network: a dummy source with an arc to each job node of capacity 1, arcs from a job
to processor node if on the list L;, arcs from proc. node to dummy ¢ of capacity P;.

(b) Give the running time of your solution as a function of n and m.

Simple is to use BFS to find each A-path, since at most n augments you get an O(n|E|) bound
with E| =n+m+ |Li|+...|Ly|-

Faster bounds are possible using arguments along the lines of problem on bipartite flow.

2 Suffix Trees [20 points]

In our description of suffix trees we claimed that once a suffix tree is built, we can find all positions where a
pattern P of length m occurs in O(m + k) time, where k is the number of times the Pattern P occurs. This
claim is not immediate since you will normally find the end of P in the middle of the tree and will then have
to go down to the leaves to find where it occurs.

A) Show how to find all occurances of the pattern in O(m + k) time. Justify the correctness and time bound
of your solution (note, no modifications to the suffix tree should be necessary).

Once you get to the correct internal node, just do a DFS on the subtree rooted at that node. Time
is O(k).

B) If we only want to find the last occurance of P how should the suffix tree be modified so that
we can find the position of the last match to P in O(1) time once we have found P in our tree?

Do a postorder traversal of the suffix tree recording at each iternal node the largest leaf in its
subtree. Takes O(n) time and then each node has the right answer.
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3 Network Flow [25 points]

Part A. Suppose that all arcs in our flow network have capacities of one. We call this a Unit flow net-
work. The preflow push will now have much better worst case performance. Prove a sharper bound on the
performance of the Generic preflow-push algorithm for a unit network with n nodes and m arcs.

No non-saturating pushes, so O(mn) time.

Part B. We define a bipartite flow network as follows: its vertices are s, t and two sets of vertices L and R.
All arcs in the network go from s to nodes in L, from a node in L to a node in R, or from a node in R to t.

i) Let | be the number of nodes in L and r be the number of nodes in R. Suppose that [ >> r. In a general
flow network an Augmenting path can be as long as n — 1 (where for this network n = r + 1+ 2). Give a
much better bound for the maximum length of an augmenting path in a Bipartite flow network. Justify your
answer.

ii) If we have a flow network N where the maximum length of any simple path in the residual network is d,
what can we say about the maximum height of a node in N during the course of the preflow push algorithm?

i) an A-path is always of the form: s —u; —v; —...u; —v; —t where u; is in L and v; is in R. Thus
the path has length at most 2r + 2.

ii) Since heights bound the length of A-paths to s and t we get a height bound of 2d — 1.

4 NP-Completeness Bound [20 points|

The 8-Disk Packing (3DP) problem is as follows: you want to store n files on three equal size disks where
each file is to reside entirely on one disk. The input is n, the file sizes fi, fa,..., f, in bytes, and D the
capacity of each of the three disks (also in bytes). The output is yes/no depending on whether such a packing
exists.

A) Show that 3DP is in NP. Given a solution (for each of the n files which disk its on), easy to check
that all files assigned and total for each disk at most D.

B) Use the fact that Set Partition is NP-complete to show that 3DP is also NP-complete.

See page 1017, prob. 34.5-5 for set partition def. SP is solved by taking input S = z1 ...z, and
converting to a 3DP problem where D is half the sum of the numbers in S and the files have size
x; plus one new file of size D (so it fills a disk entirely). We can fit the files on two disks of size D
exactly when there is a partition.

C) If you want to show that a problem @ is NP-hard would it ever be better to use Subset Sum
instead of Set Partition? Justify your answer.

NO. A reduction for SS always also works for SP, but SP may be able to use a simpler reduction
(since its a special case of SS).

5 Approximatation algorithms [15 points]

We consider variants on the approximation algorithms we discussed for the Traveling Salesman Problem
(TSP). The Repetition Traveling Salesman Problem (RTSP) is the same as the TSP problem (we have a
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complete weighted graph as input, and want the shortest cycle which visits each city at least once), but we
are now allowed to visit cities more than once on the tour if that is helpful.

A) Suppose that we have a complete graph G with non-negative symmetric costs but which does NOT obey
the triangle inequality. Describe a variant of the 1-approximation algorithm for TSP we described in class
which is a 1-approximation algorithm for RTSP in this setting.

The key idea is to first run an all pairs shortest path algorithm on G. We then use these distances
as our new arc lengths (so the arc (u,v) has as its weight the shortest path distance from u to v.
We now run our TSP approximation algorithm on this new graph. At the end we replace each edge
(u,v) from our revised graph by the shortest path from u to v in the original graph (legal since we
are allowed to repeat vertices).

B) Justify the correctness of your approximation algorithm of part A.

The key fact is that the shortest path distances always obey the triangle inequality (by the definition
of shortest paths). Thus the revised graph we used in part A is symetric and obeys the triangle
inequality, so our approximation algorithm works. When we convert an arc in G’ to its shortest
path, we don’t change the cost of our tour.



