Part 1

Suffix trees and their uses

Chapter 1

Introduction to suffix trees

A suffix tree is a data structure that exposes the internal structure of a
string in a deep way. Suffix trees can be used to solve the exact matching
problem in linear time (achieving the same worst case bound that the Knuth-
Morris-Pratt and the Boyer-Moore algorithms achieve), but their real virtue
comes from their use in linear time solutions to many string problems more
complex than exact matching.

The classic application for suffix trees is the substring problem. One is
first given a text T of length m. After O(m), or linear, preprocessing time,
one must be prepared to take in any unknown string S of length n and in
O(n) time either find an occurrence of S in 7" or determine that S is not
contained in T'. That is, the allowed preprocessing takes time proportional
to the length of the text, but thereafter, the search for S must be done in
time proportional to the length of S, independent of the length of T. These
bounds are achieved with the use of a suffix tree. The suffix tree for the
text is built in O(m) time during a preprocessing stage; thereafter whenever
a string of length O(n) is input, the algorithm searches for it in O(n) time
using that suffix tree.

The O(m) preprocessing and O(n) search result for the substring prob-
lem is very surprising and extremely useful. In typical applications, a long
sequence of requested strings will be input after the suffix tree is built, so the
linear time bound for each search is important. That bound is not achievable
by the Knuth-Morris-Pratt or Boyer-Moore methods — those methods would
preprocess each requested string on input, and then take ©(m) (worst case)
time to search for the string in the text. Since m may be huge compared to
n, those algorithms would be impractical on any but trivial sized texts.

Often the text is a fixed set of strings. so that the substring problem
is to determine whether the input string is a substring of any of the fixed
strings. Suffix trees work nicely to efficiently solve this problem as well.

After presenting the algorithms, several applications and extensions will

4 CHAPTER 1. INTRODUCTION TO SUFFIX TREES

be discussed in Chapter ??. Then a remarkable result, the constant time least
common ancestor method, will be presented in Chapter ??. That method
greatly amplifies the utility of suffix trees, as will be illustrated by additional
applications in Chapter ?7.

1.1 A short history

The first linear time algorithm for constructing suffix trees was given by
Weiner [4] in 1973, although he called his tree a position tree. A different,
more space efficient algorithm to build suffix trees in linear time was given
by McCreight [2] a few years later. Recently, Ukkonen [3] developed a con-
ceptually different linear time algorithm for building suffix trees which has
all the advantages of McCreight’s algorithm (and when properly viewed can
be seen as a variant of McCreight’s algorithm) but allows a much simpler
explanation.

Although more than twenty years have passed since Weiner’s original
result (which Knuth is claimed to have called “the algorithm of 1973” [1]),
suffix trees have not made it into the mainstream of computer science educa-
tion, and have generally received less attention and use than might have been
expected. This is probably because the two original papers of the 1970°s have
a reputation for being extremely difficult to understand. That reputation is
well deserved but unfortunate, because the algorithms, although non-trivial,
are not more complicated than many widely taught methods. And, when
implemented well, the algorithms are practical and allow efficient solutions
to many complex string problems. We know of no other single data structure
(other than those essentially equivalent to suffix trees) that allows efficient
solutions to such a wide range of complex string problems.

Chapter 2 fully develops the linear time algorithms of Weiner and Ukko-
nen, and then briefly mentions the high level organization of McCreight’s
algorithm and its relationship to Ukkonen’s algorithm. Our approach is to
introduce each algorithm at a high level, giving simple, inefficient implemen-
tations. Those implementations are then incrementally improved to achieve
linear running times. We believe that the expositions and analyses given
here, particularly for Weiner’s algorithm, are much simpler and clearer than
in the original papers, and hope that these expositions result in a wider use
of suffix trees in practice.

1.2 Basic definitions

When describing how to build a suffix tree for an arbitrary string, we will
refer to the generic string S of length m. We do not use P or T (denoting
pattern and text) because suffix trees are used in a wide range of applications

1.2. BASIC DEFINITIONS 5

where the input string sometimes plays the role of a pattern, sometimes
a text, sometimes both, and sometimes neither. As usual the alphabet is
assumed finite and known. After discussing suffix tree algorithms for a single
string S, we will generalize the suffix tree to handle sets of strings.

Definition A suffix tree 7 for an m-character string S is a rooted di-
rected tree with exactly m leaves numbered 1 to m. Each internal node,
other than the root, has at least two children and each edge is labeled with a
non-empty substring of S. No two edges out of a node can have edge- labels
which begin with the same character. The key feature of the suffix tree is
that for any leaf 7, the concatenation of the edge-labels on the path from the
root to leaf 7 exactly spells out the suffix of S that starts at position ¢. That
is, it spells out S[i..m].

For example, the suffix tree for the string zabzac is shown in Figure 1.1.
The path from the root to the leaf numbered 1 spells out the full string
S = zabzac, while the path to the leaf numbered 5 spells out the suffix ac
which starts in position 5 of S.

X a bx ac

®]

Figure 1.1: Suffix tree for string zabzac. The node labels uw and w on the
two interior nodes will be used later.

As stated above, the definition of a suffix tree for S does not guarantee
that a suffix tree for any string S actually exists. The problem is that if
one suffix of S matches a prefiz of another suffix of S then no suffix tree
obeying the above definition is possible, since the path for the first suffix
would not end at a leaf. For example, if the last character of zabzac is
removed, creating string xabza, then suffix za is a prefix of suffix zabza, so
the path spelling out za would not end at a leaf.

To avoid this problem, we assume (as was true in Figure 1.1) that the
last character of S appears nowhere else in .S. Then, no suffix of the resulting

6 CHAPTER 1. INTRODUCTION TO SUFFIX TREES

string can be a prefix of any other suffix. To achieve this in practice, we can
add a character to the end of S that is not in the alphabet that string S is
taken from. In this book we use $ for the “termination” character. When
it is important to emphasize the fact that this termination character has
been added, we will write it explicitly as in S$. But much of the time, this
reminder will not be necessary and, unless explicitly stated otherwise, every
string S is assumed to be extended with the termination symbol $, even if
the symbol is not explicitly shown.

A suffix tree is related to the keyword tree (without backpointers) con-
sidered in Section ?7. Given string .9, if set P is defined to be the m suffixes
of S, then the suffix tree for S can be obtained from the keyword tree for P
by merging any path of non-branching nodes into a single edge. The simple
algorithm given in Section ?? for building keyword trees could be used to
construct a suffix tree for S in O(m?) time, rather than the O(m) bound we
will establish.

Definition The label of a path from the root that ends at a node is the
concatenation, in order, of the substrings labeling the edges of that path.
The path-label of a node is the label of the path from the root of 7 to that
node.

Definition For any node v in a suffix tree, the string-depth of v is the
number of characters in v’s label.

Definition A path that ends in the middle of an edge (u,v) splits the
label on (u,v) at a designated point. Define the label of such a path as
the label of u concatenated with the characters on edge (u,v) down to the
designated split point.

For example, in Figure 1.1 string za labels the internal node w (so node
w has path-label za), string a labels node u, and string zabz labels a path
that ends inside edge (w, 1), i.e. inside the leaf edge touching leaf 1.

1.3 A motivating example

Before diving into the details of the methods to construct suffix trees, let’s
look at how a suffix tree for a string is used to solve the exact match problem:
given a pattern P of length n and a text T of length m, find all occurrences
of Pin T in O(n + m) time. We have already seen several solutions to this
problem. Suffix trees provide another approach.

Build a suffix tree 7 for text 7" in O(m) time, Then match the
characters of P along the unique path in 7 until either P is
exhausted or no more matches are possible. In the latter case P
does not appear anywhere in T'. In the former case, every leaf in

1.3. A MOTIVATING EXAMPLE 7

the subtree below the point of the last match is numbered with
a starting location of P in T, and every starting location of P in
T numbers such a leaf.

The key to understanding the former case (when all of P matches a path
in T') is to note that P occurs in T starting at position j if and only if P
occurs as a prefix of T[j..m]. But that happens if and only if string P labels
an initial part of the path from the root to leaf j. It is that initial path that
will be followed by the matching algorithm.

The matching path is unique because no two edges out of a common
node can have edge-labels beginning with the same character. And, because
we have assumed a finite alphabet, the work at each node is constant and
so the time to match P to a path is proportional to the length of P.

For example, Figure 1.2 shows a fragment of the suffix tree for string
T = awyawzawzz. Pattern P = aw appears three times in T starting at
locations 1, 4 and 7. Pattern P matches a path down to the point shown
by an arrow, and as required, the leaves below that point are numbered 1, 4
and 7.

If P fully matches some path in the tree, the algorithm can find all the
starting positions of P in T by traversing the subtree below the end of the
matching path, collecting position numbers written at the leaves. So all
occurrences of P in 1" can be found in O(n + m) time. This is the same
overall time bound achieved by several algorithms considered in Part I, but
the distribution of work is different. Those earlier algorithms spend O(n)
time for preprocessing P, and then O(m) time for the search. In contrast,
the suffix tree approach spends O(m) preprocessing time, and then O(n+ k)
search time, where k is the number of occurrences of P in T.

To collect the k starting positions of P, traverse the subtree at the end of
the matching path using any linear time traversal (depth-first say), and note
the leaf numbers encountered. Since every internal node has at least two
children, the number of leaves encountered is proportional to the number of
edges traversed, so the time for the traversal is O(k), even though the the
total string-depth of those O(k) edges may be arbitrarily larger than k.

If only a single occurrence of P is required, and the preprocessing is
extended a bit, then the search time can be reduced from O(n + k) to O(n)
time. The idea is to write at each node one number (say the smallest) of a
leaf in its subtree. This can be achieved in O(m) time in the preprocessing
stage by a depth-first traversal of 7. The details are straightforward and
are left to the reader. Then, in the search stage, the number written on the
node at or below the end of the match gives one starting position of P in T.

In Section ?? we will again consider the relative advantages of meth-
ods that preprocess the text versus methods that preprocess the pattern(s).
Later, in Section ?? we will also show how to use a suffix tree to solve the

8 CHAPTER 1. INTRODUCTION TO SUFFIX TREES

4

7

Figure 1.2: Three occurrences of aw in ewyawzawzz. Their starting posi-
tions number the leaves in the subtree of the node with path-label aw.

1.4. A NAIVE ALGORITHM TO BUILD A SUFFIX TREE 9

exact matching problem using O(n) preprocessing and O(m) search time,
achieving the same bounds as in the algorithms presented in Part I.

1.4 A naive algorithm to build a suffix tree

To further solidify the definition of a suffix tree and develop the reader’s
intuition, we present a straightforward algorithm to build a suffix tree for
string S. This naive method first enters a single edge for suffix S[1..m]$ (the
entire string) into the tree, then it successively enters suffix S[i..m]$ into the
growing tree, for ¢ increasing from 2 to m. We let N; denote the intermediate
tree that encodes all the suffixes from 1 to .

In detail, tree Ny consists of a single edge between the root of the tree
and a leaf labeled 1. The edge is labeled with the string S$. Tree N;;q is
constructed from N; as follows: Starting at the root of N; find the longest
path from the root whose label matches a prefix of S[i 4 1..m]$. This path
is found by successively comparing and matching characters in suffix S[: +
1..m]$ to characters along a unique path from the root, until no further
matches are possible. The matching path is unique because no two edges
out of a node can have labels which begin with the same character. At some
point, no further matches are possible because no suffix of S$ is a prefix of
any other suffix of S$. When that point is reached, the algorithm is either
at a node, w say, or it is in the middle of an edge. If it is in the middle of
an edge, (u,v) say, then it breaks edge (u,v) into two edges by inserting a
new node, called w, just after the last character on the edge that matched a
character in S[i+ 1..m], and just before the first character on the edge that
mismatched. The new edge (u, w) is labeled with the part of the (u,v) label
that matched with S[i 4+ 1..m], and the new edge (w,v) is labeled with the
remaining part of the (u,v) label. Then (whether a new node w was created,
or already existed at the point where the match ended), the algorithm creates
a new edge (w, 74 1) running from w to a new leaf labeled i+ 1, and it labels
the new edge with the unmatched part of suffix S[i + 1..m]$.

The tree now contains a unique path from the root to leaf ¢ + 1, and this
path is labeled with the string S[1 4 1..m]$. Note that all edges out of the
new node w have labels which begin with different first characters, and so
it follows inductively that no two edges out of a node have labels with the
same first character.

Assuming, as usual, a bounded-size alphabet, the above naive method
takes O(m?) time to build a suffix tree for the string S of length m.

10

CHAPTER 1.

INTRODUCTION TO SUFFIX TREES

Chapter 2

Linear time construction of
suffix trees

We will present two methods for constructing suffix trees in detail, Weiner’s
method and Ukkonen’s method. Weiner was the first to show that suffix
trees can be built in linear time, and his method is presented both for its
historical importance and for some different technical ideas that it contains.
However, Ukkonen’s method is equally fast and uses far less space in practice
than Weiner’s method. Hence Ukkonen is the method of choice for most
problems requiring the construction of a suffix tree. We also believe that
Ukkonen’s method is easier to understand. Therefore, it will be presented
first. A reader who wishes to study only one method is advised to concentrate
on it. However, our development of Weiner’s method does not depend on
understanding Ukkonen’s algorithm, and the two algorithms can be read
independently (with one small shared section noted in the description of
Weiner’s method).

2.1 UkKkkonen’s linear time suffix tree algorithm

Esko Ukkonen [3] devised a linear time algorithm for constructing a suf-
fix tree which may be the conceptually easiest linear time construction al-
gorithm. This algorithm has a space saving improvement over Weiner’s
algorithm (which was achieved first in the development of McCreight’s al-
gorithm), and it has a certain “on-line” property that may be useful in
some situations. We will describe that on-line property, but emphasize that
the main virtue of Ukkonen’s algorithm is the simplicity of its description,
proof and time analysis. The simplicity comes because the algorithm can be
developed as a simple but inefficient method, followed by “common-sense”
implementation tricks that establish a better worse-case running time. We
first describe Ukkonen’s algorithm at a high level and give an inefficient im-

11

12CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

plementation of it. Using a few tricks and observations, that implementation
will be refined and sped up to achieve the desired linear time bound. We
believe that this less direct exposition is more understandable, as each step
is simple to grasp.

2.1.1 TImplicit suffix trees

Ukkonen’s algorithm constructs a sequence of implicit suffix trees, the last
of which is converted to a true suffix tree of the string S.

Definition An implicit suffiz tree for string S is a tree obtained from
the suffix tree for S$ by removing every copy of the terminal symbol § from
the edge labels of the tree, then removing any edge that has no label, and
then removing any node that does not have at least two children.

An implicit suffix tree for a prefix S[1..i] of S is similarly defined by
taking the suffix tree for S[1..7]$ and deleting $ symbols, edges and nodes as
above.

Definition We denote the implicit suffix tree of the string S[1..7] by Z;,
for ¢ from 1 to m.

The implicit suffix tree for any string S will have fewer leaves than the
suffix tree for string S$ if and only if at least one of the suffixes of S is a
prefix of another suffix. The terminal symbol $§ was added to the end of S
precisely to avoid this situation. However, if S ends with a character that
appears nowhere else in S, then the implicit suffix tree of S will have a leaf
for each suffix and will hence be a true suffix tree.

As an example, consider the suffix tree for string zabxza$ shown in Figure
2.1. Suffix za is a prefix of suffix zabza, and similarly the string a is a prefix
of abza. Therefore, in the suffix tree for zabza the edges leading to leaves
four and five are labeled only with $. Removing these edges creates two
nodes with only one child each, and these are then removed as well. The
resulting implicit suffix tree for zabza is shown in Figure 2.2. As another
example, Figure 1.1 on page 5 shows a tree built for the string zabzac. Since
character ¢ appears only at the end of the string, the tree in that figure is
both a suffix tree and an implicit suffix tree for the string.

Even though an implicit suffix tree may not have a leaf for each suffix, it
does encode all the suffixes of S — each suffix is spelled out by the characters
on some path from the root of the implicit suffix tree. But if the path does
not end at a leaf, there will be no marker to indicate the path’s end. Thus
implicit suffix trees, on their own, are somewhat less informative than true
suffix trees. We will use them just as a tool in Ukkonen’s algorithm to finally
obtain the true suffix tree for S.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM

Figure 2.1: Suffix tree for string zabza$.

2

Figure 2.2: Implicit suffix tree for string zabza.

13

14CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

2.1.2 Ukkonen’s algorithm at a high level

Ukkonen’s algorithm constructs an implicit suffix tree Z; for each prefix
S[1..7] of S, starting from Z; and incrementing ¢ by one until Z,, is built.
The true suffiz tree for S is constructed from Z,, and the time for the entire
algorithm is O(m). We will explain Ukkonen’s algorithm by first presenting
an O(m?) time method to build all trees Z; and then optimizing its imple-
mentation to obtain the claimed time bound.

High level description of Ukkonen’s algorithm

Ukkonen’s algorithm is divided into m phases. In phase ¢ + 1, tree Z;4; is
constructed from 7;. Each phase 141 is further divided into i+ 1 extensions,
one for each of the 41 suffixes of S[1..i41]. In extension j of phase i+1, the
algorithm first finds the end of the path from the root labeled with substring
S[j..7]. It then extends the substring by adding the character S(i + 1) to
its end, unless S(i + 1) already appears there. So in phase i 4 1, string
S[1..i41] is first put in the tree, followed by strings S[2..i4+1], S[3..i+1], ...
(in extensions 1,2, 3, ... , respectively). Extension ¢4 1 of phase i+ 1 extends
the empty suffix of S[1..7], i.e., putting the single character string S(¢ + 1)
into the tree (unless it is already there). Tree Z; is just the single edge
labeled by character S(1). Procedurally, the algorithm is a as follows.

Construct tree 7.

For ¢ from 1 to m — 1 do
begin {phase i + 1}
For j from 1 to 7+ 1
begin {extension j}
Find the end of the path from the root labeled S[j..7] in the
current tree. If needed, extend that path by adding character S(i + 1),
thus assuring that string S[j..i + 1] is in the tree.
end;
end;

Suffix extension rules

To turn this high level description into an algorithm, we must specify
exactly how to perform a suffiz extension. Let S[j..i] = 3 be a suffix of
S[1..7]. In extension j, when the algorithm finds the end of § in the current
tree, it extends [to be sure the suffix 3S(¢+ 1) is in the tree. It does this
according to one of the following three cases:

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 15

1. Case 1: In the current tree, path 0 ends at a leaf. That is, the path
from the root labeled 3 extends to the end of some leaf edge. To
update the tree, character S(7+ 1) is added to the end of the label on
that leaf edge.

2. Case 2: No path from the end of string 3 starts with character S(i+1),
but at least one labeled path continues from the end of j.

In this case, a new leaf edge starting from the end of 3 must be created
and labeled with character S(i+ 1). A new node will also have to be
created there if § ends inside an edge. The leaf at the end of the new
leaf edge is given the number j.

3. Case 3: Some path from end of string § starts with character S(i+1).

In this case the string 35(7 + 1) is already in the current tree, so
(remembering that in an implicit suffix tree the end of a suffix need
not be explicitly marked) we do nothing.

As an example, consider the implicit suffix tree for S = azabz shown
in Figure 2.3. The first four suffixes end at leaves, but the single character
suffix ends inside an edge. When a sixth character b is added to the string,
the first four suffixes get extended by applications of rule 1, the fifth suffix
gets extended by rule 2, and the sixth by rule 3. The result is shown in
Figure 2.4.

2.1.3 Implementation and speedup

Using the suffix extension rules given above, once the end of a suffix 3 of
S[1..7] has been found in the current tree only constant time is needed to
execute the extension rules (to ensure that suffix 3S(i 4 1) is in the tree).
The key issue in implementing Ukkonen’s algorithm then is how to locate
the ends of all the 7 4 1 suffixes of S[1..7].

Naively we could find the end of any suffix 5 in O(|3]|) time by walking
from the root of the current tree. By that approach, extension j of phase
i+ 1 would take O(i + 1 — j) time, Z;11 could be created from Z; in O(m?)
time, and Z,, could be created in O(m?) time. This algorithm may seem
rather foolish since we already know a straightforward algorithm to build a
suffix tree in O(m?) time (and another is discussed in the exercises), but it
is easier to describe Ukkonen’s O(m) algorithm as a speed up of the O(m?)
method above.

We will reduce the above O(m?) time bound to O(m) time with a few ob-
servations and implementation tricks. Each trick by itself looks like a sensible
heuristic to accelerate the algorithm, but not one that necessarily reduces
the worst case bound. However, taken together, these tricks do achieve a

16CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

1

Figure 2.3: Implicit suffix tree for string axzaba before the sixth character, b

is added.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 17

Figure 2.4: Extended implicit suffix tree after the addition of character b.

linear worst case time. The most important element of the acceleration is
the use of suffix links.

2.1.3.1 Suffix links: first implementation speedup

Definition Let za denote an arbitrary string, where = denotes a single
character, and « denotes a (possibly empty) string. For an internal node v
with path-label za, if there is another node s(v) with path-label a, then a
pointer from v to s(v) called a suffiz link.

We will sometimes refer to a suffix link from v to s(v) as the pair (v, s(v)).
For example, in Figure 2.1 (on page 13) let v be the node with path-label za
and let s(v) be the node whose path- label is the single character a. Then
there exists a suffix link from node v to node s(v). In this case, « is just a
single character long.

As a special case, if a is empty, then the suffix link from an internal
node with path-label za goes to the root node. The root node itself is not
considered internal and has no suffix link from it.

The definition of suffix links does not imply that every internal node
of an implicit suffix tree has a suffix link from it, but in fact it will have
one. We actually establish something stronger in the following lemmas and

18CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

corollaries.

Lemma 2.1.1 If a new internal node v with path-label xa is added to the
current tree in extension j of some phase i + 1, then either the path labeled
« already ends at an internal node of the current tree, or an internal node
at the end of string o will be created (by the extension rules) in extension
7+ 1 in the same phase 1+ 1.

Proof A new internal node v is created in extension j (of phase i +
1) only when extension rule 2 applies. That means that in extension j,
the path labeled za continued with some character other than S(i 4+ 1),
say c. So in extension j + 1, there is a path labeled « in the tree and it
certainly has a continuation with character ¢ (although possibly with other
characters as well). There are then two cases to consider: either the path
labeled « continue only with character ¢, or it continues with some additional
character. When « is continued only by ¢, extension rule 2 will create a node
s(v) at the end of path @. When « is continued with two different characters,
then there must already be a node s(v) at the end of path o. O

Corollary 2.1.1 In Ukkonen’s algorithm, any newly created internal node
will have a suffix link from it by the end of the next extension.

Proof The proof is inductive, and is true for tree 7y since Z; contains
no internal nodes. Suppose the claim is true through the end of phase 7, and
consider a single phase i+ 1. By Lemma 2.1.1, when a new node v is created
in extension j, the correct node s(v) ending the suffix link from v will be
found or created in extension j+ 1. No new internal node gets created in the
last extension of a phase (the extension handling the single character suffix
S(i+ 1)), so all suffix links from internal nodes created in phase i + 1 are
known by the end of the phase and tree Z;4; has all its suffix links. O

Corollary 2.1.1 is similar to Theorem 7?7 which will be discussed during
the treatment of Weiner’s algorithm, and states an important fact about
implicit suffix trees and ultimately about suffix trees. For emphasis, we
restate the corollary in slightly different language.

Corollary 2.1.2 In any implicit suffix tree Z;, if internal node v has path-
label zav, then there is a node s(v) of Z; with path-label o.

Following Corollary 2.1.1, all internal nodes in the changing tree will
have suffix links from them, except for the most recently added internal
node, which will receive its suffix link by the end of the next extension. We
now show how suffix links are used to speed up the implementation.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 19

2.1.3.2 Following a trail of suffix links to build 7,

Recall that in phase 7 + 1 the algorithm locates suffix S[j..i] of S[1..7] in
extension j, for j increasing from 1 to ¢ + 1. Naively, this is accomplished
by matching the string S[j..i] along a path from the root in the current
tree. Suffix links can shortcut this walk and each extension. The first two
extensions (for j = 1 and j = 2) in any phase i+ 1 are the easiest to describe.

The end of the full string S[1..7] must end at a leaf of Z; since S[1..i] is the
longest string represented in that tree. That makes it easy to find the end
of that suffix (as the trees are constructed, we can keep a pointer to the leaf
corresponding to the current full string S[1..7]), and its suffix extension is
handled by case 1 of the extension rules. So the first extension of any phase
is special and only takes constant time since the algorithm has a pointer to
the end of the current full string.

Let string S[1..7] be za, where z is a single character and « is a (possibly
empty) substring, and let (v, 1) be the edge that enters leaf 1. The algorithm
next must find the end of string S[2..7] = « in the current tree derived from
Z;. The key is that node v is either the root or it is an interior node of Z;.
If it is the root, then to find the end of a the algorithm just walks down
the tree following the path labeled « as in the naive algorithm. But if v is
an internal node, then by Corollary 2.1.2 (since v was in Z;) v has a suffix
link out of it to node s(v). Further, since s(v) has a path-label which is a
prefix of string «, the end of string o must end in the subtree of s(v). So, in
searching for the end of a in the current tree, the algorithm need not walk
down the entire path from the root, but can begin instead the walk from
node s(v). That is the main point of including suffix links in the algorithm.

To describe the second extension in more detail, let v denote the edge
label on edge (v,1). To find the end of a, walk up from leaf 1 to node
v; follow the suffix link from v to s(v); and walk from s(v) down the path
(which may be more than a single edge) labeled v. The end of that path
is the end of a (see Figure 2.5). At the end of path «, the tree is updated
following the suffix extension rules. This completely describes the first two
extensions of phase 7 + 1.

To extend any string S[j..7] to S[j..i + 1] for j > 2, repeat the same
general idea: starting at the end of string S[j — 1..¢] in the current tree, walk
up at most one node to either the root or to a node v that has a suffix link
from it; let v be the edge label of that edge; assuming v is not the root,
traverse the suffix link from v to s(v); then walk down the tree from s(v),
following a path labeled v to the end of S[j..i]; finally extend the suffix to
S[j..i + 1] according to the extension rules.

There is one minor difference between extensions for j > 2 and the first
two extensions. In general, the end of S[j — 1..i] may be at a node that itself
has a suffix link from it, in which case the algorithm traverses that suffix

20CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

link. Note that even when extension rule 2 applies in extension j—1 (so that
the end of S[j — 1..7] is at a newly created internal node w), if the parent of
w is not the root, then the parent of w already has a suffix link out of it, as
guaranteed by Lemma 2.1.1. So in extension j the algorithm never walks up
more than one edge.

node s(v)

Figure 2.5: Extension j > 1 in phase 7 + 1. Walk up one edge (labeled 7)
from the end of the path labeled S[j — 1..7] to node v; then follow the suffix
link to s(v); then walk down the path specifying substring v; then apply the
appropriate extension rule to insert suffix S[j..7i+ 1].

2.1.3.3 Single extension algorithm: SEA

Putting these pieces together, when implemented using suffix links, extension
7 > 2 of phase 7+ 1 is:

begin

1. Find the first node v at or above the end of S[j — 1..7] which has a
suffix link from it, or is the root. This requires walking up at most one edge
from the end of S[j—1..7] in the current tree. Let v (possibly empty) denote
the string between v and the end of S[j — 1..7].

2. If v is not the root, traverse the suffix link from v to node s(v) and
then walk down from s(v) following the path for string . If v is the root,
then follow the path for S[j..;] from the root (as in the naive algorithm).

3. Ensure that the string S[j..¢]S(i41) is in the tree, using the extension
rules.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 21

4. If a new internal node w was created in extension j — 1 (by extension
rule 2), then by Lemma 2.1.1, string @ must end at node s(w), the end node
for the suffix link from w. Create the suffix link (w, s(w)) from w to s(w).

end.

Assuming the algorithm keeps a pointer to the current full string S[1..i],
the first extension of phase ¢ + 1 need not do any up or down walking.

Further, the first extension of phase 7+ 1 always applies suffix extension rule
1.

What has been achieved so far?

The use of suffix links is clearly a practical improvement over walking from
the root in each extension, as done in the naive algorithm. But does their
use improve the worst case running time?

The answer is that as described the use of suffix links does not yet improve
the time bound. But here we bring in a trick that will reduce the worst
case time for the algorithm to O(m?). This trick will also be used in other
algorithms to build and use suffix trees.

2.1.3.4 Trick number 1: skip/count trick

In step 2 of extension 7+ 1 the algorithm walks down from node s(v) along
a path labeled . Recall that there surely must be such a v path from s(v).
Directly implemented, this walk along v takes time proportional to |y|, the
number of characters on that path. But a simple trick, called the skip/count
trick, will reduce the traversal time to something proportional to the number
of nodes on the path. It will then follow that the time for all the down walks
in a phase is at most O(m).

Trick 1: Let g denote the length of v, and recall that no two labels of
edges out of s(v) can start with the same character, so the first character
of v must appear as the first character on exactly one edge out of s(v). Let
g’ denote the number of characters on that edge. If ¢’ is less than g, then
the algorithm does not need to look at any more of the characters on that
edge; it simply skips to the node at the end of the edge. There it sets g to
g — ¢', sets a variable h to ¢’ + 1 and looks over the outgoing edges to find
the correct next edge (whose first character matches character A of). In
general, when the algorithm identifies the next edge on the path it compares
the current value of g to the number of characters ¢’ on that edge. When
g is at least as large as ¢’, the algorithm skips to the node at the end of
the edge, sets g to g — ¢, sets h to h + ¢’, and finds the edge whose first
character is character h of v and repeats. When an edge is reached where g
is smaller than or equal to ¢’, then the algorithm skips to character g on the

22CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

edge and quits, assured that the v path from s(v) ends on that edge exactly
g characters down its label. See Figure 2.6.

end of x
suffix j-1 end of
suffix j

Figure 2.6: The skip/count trick. In phase ¢ 4+ 1, substring v has length
ten. There is a copy of substring v out of node s(v), and it is found three
characters down the last edge, after four node skips are executed.

Assuming simple and obvious implementation details (such as knowing
the number of characters on each edge, and being able, in constant time, to
extract from S the character at any given position) the effect of using the
skip/count trick is to move from one node to the next node on the v path
in constant time'. The total time to traverse the path is then proportional
to the number of nodes on it rather than the number of characters on it.

A useful heuristic, but what does it buy in terms of worst case bounds?
The next lemma leads immediately to the answer.

Definition Define the node-depth of a node u to be the number of nodes
on the path from the root to .

! Again, we are assuming a constant size alphabet.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 23

Lemma 2.1.2 Let (v,s(v)) be any suffiz link traversed during Ukkonen’s
algorithm. At that moment, the node-depth of v is at most one greater than

the node depth of s(v).

Proof When edge (v, s(v)) is traversed, any internal ancestor of v, which
has path-label =/ say, has a suffix link to a node with path-label 5. But z(
is a prefix of the path to v, so § is a prefix of the path to s(v) and it follows
that the suffix link from any internal ancestor of v goes to an ancestor of
s(v). Moreover, if § is non-empty then the node labeled by (3 is an internal
node. And, since the node-depths of any two ancestors of v must differ,
each ancestor of v has a suffix link to a distinct ancestor of s(v). It follows
that the node-depth of s(v) is at least one (for the root) plus the number of
internal ancestors of v who have path-labels more than one character long.
The only extra ancestor that v can have (without a corresponding ancestor
for s(v)) is an internal ancestor whose path-label has length one (it has label
z). Therefore, v can have node-depth at most one more than s(v). See
Figure 2.7. O

Definition As the algorithm proceeds, the current node-depth of the al-
gorithm is the node depth of the node most recently visited by the algorithm.

Theorem 2.1.1 Using the skip/count trick, any phase of Ukkonen’s algo-
rithm takes O(m) time.

Proof There are ¢t + 1 < m extensions in phase 7. In a single extension
the algorithm walks up at most one edge to find a node with a suffix link,
traverses one suffix link, walks down some number of nodes, applies the suffix
extension rules, and maybe adds a suffix link. We have already established
that all the operations other than the down-walking take constant time per
extension, so we only need to analyze the time for the down-walks. We do
this by examining how the current node-depth can change over the phase.

The up-walk in any extension decreases the current node-depth by at
most one (since it moves up at most one node), each suffix link traversal
decreases the node depth by at most another one (by Lemma 2.1.2), and
each edge traversed in a down walk moves to a node of greater node-depth.
So over the entire phase the current node-depth is decremented at most 2m
times, and since no node can have depth greater than m, the total possible
increment to current node-depth is bounded by 3m over the entire phase.
It follows that over the entire phase, the total number of edge traversals
during down-walks is bounded by 3m. Using the skip/count trick, the time
per down edge traversal is constant, the total time in a phase for all the
down-walking is O(m), and the theorem is proved. O

There are m phases, so the following is immediate.

24CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

Figure 2.7: For every node v on the path za, the corresponding node s(v)
is on the path a. However, the node-depth of s(v) can be one less than the
node depth of v, it can be equal or it can be greater. For example, the node
labeled zab has node-depth two, while the node depth of abis one. The node
depth of the node labeled zabedefyg is five while the node depth of abcdefg is
SiX.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 25

Corollary 2.1.3 Ukkonen’s algorithm can be implemented with suffiz links
to run in O(m?) time.

Note that the O(m?) time bound for the algorithm was obtained by
multiplying the O(m) time bound on a single phase by m (since there are m
phases). This crude multiplication was necessary because the time analysis
was directed to only a single phase. What is needed are some changes to
the implementation allowing a time analysis that crosses phase boundaries.
That will be done shortly. But at this point the reader may be a bit weary
because we seem to have made no progress, since we started with a naive
O(m?*) method. Why all the work just to come back to the same time bound?
The answer is that although we have made no progress on the time bound,
we have made great conceptual progress so that with only a few more easy
details, the time will fall to O(m). In particular we will need one simple
implementation detail and two more little tricks.

2.1.4 A simple implementation detail

We next establish an O(m) time bound for building a suffix tree. But there
is one immediate barrier to that goal: the suffix tree may require ©(m?)
space. As described so far, the edge labels of a suffix tree might contain
more than ©(m) characters in total. Since the time for the algorithm is at
least as large as the size of its output, that many characters makes an O(m)
time bound impossible. Consider the string S = abedefghijklmnopqrstuvwzyz.
Every suffix begins with a distinct character, hence there are 26 edges out
of the root and each is labeled with a complete suffix, requiring 26x27/2
characters in all. For strings longer than the alphabet size, some characters
will repeat, but still one can construct strings of arbitrary length m so that
the resulting edge labels have more than ©(m) characters in total. Thus, an
O(m) time algorithm for building suffix trees requires some alternate scheme
to represent the edge labels.

Edge label compression

A simple, alternate scheme exists for edge labeling. Instead of explicitly
writing a substring on an edge of the tree, only write a pair of indices on
the edge, specifying beginning and end positions of that substring in S (see
Figure 2.8). Since the algorithm has a copy of string S, it can locate any
particular character in S in constant time given its position in the string.
Therefore we may describe any particular suffix tree algorithm as if edge
labels were explicit, and yet implement that algorithm with only a constant
number of symbols written on any edge (the index pair indicating the be-
ginning and ending positions of a substring).

26CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

For example, in Ukkonen’s algorithm when matching along an edge, the
algorithm uses the index pair written on an edge to retrieve the needed
characters from S, and then performs the comparisons on those characters.
The extension rules are also easily implemented with this labeling scheme.
When extension rule 2 applies in a phase ¢+ 1, label the newly created edge
with the index pair (¢4 1,74 1), and when extension rule 1 applies (on a leaf
edge), change the index pair on that leaf edge from (p, ¢) to (p,q¢+1). It is
easy to see inductively that ¢ had to be ¢ and hence the new label (p,i+ 1)
represents the correct new substring for that leaf edge.

S = abcdefabcuvw

Figure 2.8: The left tree is a fragment of the suffix tree for string S =
abcdefabcuvw, withe the edge labels written explicitly. The right tree shows
the edge labels compressed.Note that that edge with label 2,3 could also
have been labeled 8,9.

By using an index pair to specify an edge label, only two numbers are
written on any edge, and since the number of edges is at most 2m — 1, the
suffix tree uses only O(m) symbols and requires only O(m) space. This makes
it more plausible that the tree can actually be built in O(m) time?. Although
the fully implemented algorithm will not explicitly write a substring on an
edge, we will still find it convenient to talk about “the substring or label on
an edge or path” as if the explicit substring was written there.

2.1.5 Two more little tricks and we’re done

We present two more implementation tricks that come from two observa-
tions about the way the extension rules interact in successive extensions and
phases. These tricks, plus Lemma 2.1.2, will lead immediately to the desired
linear time bound.

2We make the standard assumption that a number with up to logm bits can be read,
written or compared in constant time.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 27

Observation 1: Case 3 is a show stopper. In any phase, if suffix
extension rule 3 applies in extension j, it will also apply in all further ex-
tensions (j+ 1 to 74 1) until the end of the phase. The reason is that when
rule 3 applies, the path labeled S[j..i] in the current tree must continue with
character S(¢ + 1), and so the path labeled S[j 4 1..7] does also, and rule 3
again applies in extensions j+ 1,57+ 2,...,1+ 1.

When extension rule 3 applies, no work needs to be done since the suffix
of interest is already in the tree. Moreover, a new suffix link needs to be
added to the tree only after an extension in which extension rule 2 applies.
These facts and observation 1 leads to the following implementation trick.

Trick 2: End any phase ¢+ 1 the first time that extension rule 3 applies.
If this happens in extension j, then there is no need to explicitly find the
end of string S[k..i] for k& > j.

The extensions in phase ¢ + 1 that are “done” after the first execution
of rule 3, are said to be done implicitly. This is in contrast to any extension
j where the end of S[j..7] is explicitly found. An extension of that kind is
called an explicit extension.

Trick 2 is clearly a good heuristic to reduce work, but it’s not clear if
it leads to a better worst-case time bound. For that we need one more
observation and trick.

Observation 2: Once a leaf, always a leaf. That is, if at some point
in Ukkonen’s algorithm a leaf is created and labeled j (for the suffix starting
at position j of S), then that leaf will remain a leaf in all successive trees
created during the algorithm. This is true because the algorithm has no
mechanism for extending a leaf edge beyond its current leaf. In more detail,
once there is a leaf labeled j, extension rule 1 will always apply to extension
7 in any successive phase. So once a leaf, always a leaf.

Now leaf 1 is created in phase 1, so in any phase ¢ there is an initial se-
quence of consecutive extensions (starting with extension 1) where extension
rules 1 or 2 apply. Let j; denote the last extension in this sequence. Since
any application of rule 2 creates a new leaf, it follows from observation 2
that j; < jiy1. That is, the initial sequence of extensions where rules 1 or 2
apply cannot shrink in successive phases. This suggests an implementation
trick that in phase ¢ 4+ 1 avoids all explicit extensions 1 through j;. Instead,
only constant time will be required to do those extension implicitly.

To describe the trick, recall that the label on any edge in an implicit
suffix tree (or a suffix tree) can be represented by two indices p, ¢ specifying
the substring S[p..¢q]. Recall also that for any leaf edge of Z;, index ¢ is
equal to 7 and in phase 1+ 1 index ¢ gets incremented to 7+ 1, reflecting the
addition of character S(i+ 1) to the end of each suffix.

Trick 3: In phase i + 1, when a leaf edge is first created and would

28CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

normally be labeled with substring S[p..i + 1], instead of writing indices
(p, i+ 1) on the edge, write (p, €), where e is a symbol denoting “the current
end”. Symbol e is a global index that is set to 24 1 once in each phase. So in
phase ¢ 4+ 1, since the algorithm knows that rule 1 will apply in extensions 1
through 7; at least, it need do no additional explicit work to implement those
7i extensions. Instead, it only does constant work to increment variable e,
and then does explicit work for (some) extensions starting with extension
Ji+ 1.

2.1.5.1 The punch line

With tricks 2 and 3, explicit extensions in phase i+ 1 (using algorithm SEA)
are then only required from extension j; + 1 until the first extension where
rule 3 applies (or until extension 7+ 1 is done). All other extensions (before
and after those explicit extensions) are done implicitly. Summarizing this,
phase 7 + 1 is implemented as follows:

Single phase algorithm: SPA

begin

1. Increment index e to i + 1. (By trick 3 this correctly implements all
implicit extensions 1 through j;).

2. Explicitly compute successive extensions (using algorithm SEA) start-
ing at j; 4+ 1 until reaching the first extension j7* where rule 3 applies or until
all extensions are done in this phase. (By trick 2, this correctly implements
all the additional implicit extensions j* + 1 through i 4 1).

3. Set j;4+1 to j* — 1, to prepare for the next phase.

end.

Step 3 correctly sets j; 11 because the initial sequence of extensions where
extension rules 1 or 2 apply must end at the point where rule 3 first applies.

The key feature of algorithm SPA is that phase 1+ 2 will begin computing
explicit extensions with extension j*, where 7* was the last explicit extension
computed in phase ¢4 1. So two consecutive phases share at most one index
(7%) where an explicit extension is executed (see Figure 2.9). Moreover,
phase i + 1 ends knowing where string S[7*..i + 1] ends, so the repeated
extension of 7* in phase 7 + 2 can execute the suffix extension rule for j*
without any up-walking, suffix link traversals or node skipping. That means
the first explicit extension in any phase only takes constant time. It is now
easy to prove the main result.

Theorem 2.1.2 Using suffix links and implementation tricks 1,2 and 3,
Ukkonen’s algorithm builds implicit suffiz trees I, through Z,, in O(m) total
time.

2.1. UKKONEN’S LINEAR TIME SUFFIX TREE ALGORITHM 29

12 345 6 78

8 9 1011
111213 1415 16

16 17

Figure 2.9: Cartoon of a possible execution of Ukkonen’s algorithm. Each
line represents a phase of the algorithm, and each number represents an
explicit extension executed by the algorithm. In this cartoon there are four
phases and seventeen explicit extension. In any two consecutive phases,
there is at most one index where the same explicit extension is executed in
both phases.

Proof The time for all the implicit extensions in any phase is constant
and so is O(m) over the entire algorithm.

As the algorithm executes explicit extensions, consider an index j corre-
sponding to the explicit extension the algorithm is currently executing. Over
the entire execution of the algorithm, j never decreases, but it does remain
the same between two successive phases. Since there are only m phases, and
j is bounded by m, the algorithm therefore executes only 2m explicit exten-
sions. As established earlier, the time for an explicit extension is a constant
plus some time proportional to the number of node skips it does during the
down-walk in that extension.

To bound the total number of node skips done during all the down-
walks, we consider (similar to the proof of Theorem 2.1.1) how the current
node- depth changes during successive extensions, even extensions in differ-
ent phases. The key is that the first explicit extension in any phase (after
phase 1) begins with extension j* which was the last explicit extension in the
previous phase. Therefore, the current node-depth does not change between
the end of one extension and the beginning of the next. But, (as detailed
in the proof of Theorem 2.1.1) in each explicit extension the current node-
depth is first reduced by at most two (up-walking one edge and traversing
one suffix link), and thereafter the down-walk in that extension increases
the current node-depth by one at each node skip. Since the maximum node
depth is m, and there are only 2m explicit extensions, it follows (as in the
proof of Theorem 2.1.1) that the maximum number of node skips done dur-
ing all the down-walking (and not just in a single phase) is bounded by
O(m). All work has been accounted for, and the theorem is proved. O

2.1.6 Creating the true suffix tree

The final implicit suffix tree Z,, can be converted to a true suffix tree in
O(m) time. First, add a string terminal symbol $ to the end of S and let

30CHAPTER 2. LINEAR TIME CONSTRUCTION OF SUFFIX TREES

Ukkonen’s algorithm continue with this character. The effect is that no suffix
is now a prefix of any other suffix, so the execution of Ukkonen’s algorithm
results in an implicit suffix tree in which each suffix ends at a leaf, and so
is explicitly represented. The only other change needed is to replace each
index e on every leaf edge with the number m. This is achieved by an O(m)
time traversal of the tree, visiting each leaf edge. When these modifications
have been made, the resulting tree is a true suffix tree.
In summary,

Theorem 2.1.3 Ukkonen’s algorithm builds a true suffiz tree for S, along
with all its suffiz links in O(m) time.

Bibliography

[1] A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and
7. Galil, editors, Combinatorics on words, pages 85-96. Springer-Verlag
Nato ASI series Vol. 112, 1985.

[2] E. M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 23:262-272, 1976.

[3] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249—
260, 1995.

[4] P. Weiner. Linear pattern matching algorithms. Proceedings of the 14th
IEEE Symposium on Switching and Automata Theory, 1973, 1-11.

31

