ECS 222A: Algorithm Design and Analysis Handout 7?
UC Davis — Charles Martel October 12, 2000

Problem Set 2—Due Wed., Oct. 25 5PM

(10) Problem 1.

Suppose we want to find the first prime larger than n, a randomly chosen 160 bit number.
We argued that this will take about in(216%)/2 (about 56) calls to the Miller-Rabin primality
test (on page 841). The value of s chosen is the maximum number of tests we do on a
given number and also determines how confident we are in our result. Compare the expected
running time of the Miller-Rabin algorithm using s = 20 and s = 50 in this setting. To
simplify analysis, you may assume that exactly 56 calls to Miller-Rabin are used before the
algorithm terminates, and you only need count the number of calls to the Witness routine
(so you can ignore gains due to early termination in line 7).

(20) Problem 2. Suppose we are given two sorted lists 41 < Az < ... < A, and B1 < By <
. < B,. Prove that any comparison based algorithm for merging the two lists requires
2n — 1 comparisons in the worst case. (Hint: use an adversary argument to show that if an
algorithm doesn’t compare A; to By and A; to both B;_; and B; for i = 2,3,...,n then we

can find two inputs with the same comparison results, but different final sorted lists).

(20) Problem 3. Problem 4-7 page 75.

(20) Problem 4.

We consider some variations of the knapsack problem.

(a) Suppose we could take multiple copies of an item (thus for an item with value 3 and
weight 5 we could take four of this item getting value 12 at a cost of weight 20). Describe
how to solve the knapsack problem under this setting (include both how to find the best
total value and the best multi-set of items). Give the time and space used.

(b) The knapsack problem can be solved in O(Wn) time and O(W) space. Suppose you
knew a bound V, such that V' > V* the optimal value of the final solution. If all values
are integers, describe how to solve the knapsack problem in O(nV') time.

(c) Describe an efficient method to find a bound V such that 2V* >V > V* (your method
should be much faster than solving the knapsack problem).

(20) Problem 5.

Consider the following scheduling problem: you are given n jobs to be scheduled on a single
processor. Each job ¢ has two parameters associated with it: a processing time p; and a
deadline d;. A set of jobs is feasible if every job can be completed by its deadline.

For example if we have jobs with p;= 7 for i = 1,2, 3,4 and d1=4, d2 = 2,d3 = 6 and dy=11,
the set is feasible since we can schedule jobs in the order 2,1,3,4 and complete each job by
its deadline. However if we changed the deadline of job 3 so that d3=5, then no schedule
completes all jobs by their deadline.



2 ECS 222A Handout 7?: Problem Set 2—Due Wed., Oct. 25 5PM

(a) Prove that the following strategy schedules any feasible set of jobs to complete before
each of their deadlines. Schedule the jobs in increasing order of their deadlines. (Hint:
Show that starting with a feasible schedule which violates this strategy, you can rearrange
the jobs so that they are in increasing order by their deadlines).

(b) Suppose you are given an infeasible set of jobs. Construct a fast algorithm which finds
a maximum cardinality subset of jobs which is feasible. (Hint: this can be solved in
O(nlogn) time using a varriation of the algorithm in a).

(c) Suppose that each job also has a weight w; associated with it. Given an infeasible set of
jobs we want to find a subset of jobs of maximum weight which is feasible (the weight of
a set of jobs is the sum of the weights of the jobs in the set). Construct a fast algorithm
which finds a feasible subset of maximum weight. Hint: If W is the sum of all the weights
you can use dynamic programming to solve the problem in O(Wn) time after sorting
the jobs by their deadlines.

(15) Problem 6. Problem 16-4, page 326.



