ECS 222A: Algorithm Design and Analysis Handout 7?
UC Davis — Charles Martel November 14, 2000

Problem Set 4—Due Tuesday, Nov. 29

(20) Problem 1. We (and the book) proved a @(mn) bound on the number of saturating pushes
and a ©(n®) bound on the number of non-saturating pushes for the FIFO preflow-push algo-
rithm. We now want to conclude that we can find a max-flow in ©(n?) time.

Describe and analyze efficient data structures for this problem. You should be able to achieve
O(n3) worst case time (e.g. your structures must have the total time for push, lift and
selecting an active vertex meet this bound). In addition, for inputs where the number of
non-saturating pushes is O(mn) (which is the norm) your algorithm should run in O(mn)
time.

(20) Problem 2. Problem 27-3, page 627.

(20) Problem 3. Describe how to modify the Ford-Fulkerson algorithm (using BFS to find aug-
menting paths) if we add the restriction that for each arc (i,j) there is a lower bound ;; such
that the flow in arc (i,j) cannot be lower than /;; (you should assume an initial feasible flow,
where, the flow z;; on each arc satisfies [;; < z;; < ¢;; in addition to the balance constraints).

Extra credit (10): Describe how to find an initial feasible flow.

(20) Problem 4. Suppose that in addition to each arc having a capacity we also have a capacity
on each node (thus if node ¢ has capacity ¢; then the maximum total flow which can enter
or leave the node is ¢;). Suppose you are given a flow network with capacities on both arcs
and nodes. Describe how to find a maximum flow in such a network (hint: by modifying the
network you can use a standard flow algorithm to solve this problem).

(20) Problem 5. Use network flows to solve each of the following problems:

a) You are given a directed strongly connected graph. Each arc has a cost associated with it.
We want to find a minimum cost set of arcs such that removing that set of arcs makes the
graph no longer strongly connected.

b) In a computer network there are n processors Pi, P, .., P,, and m communication lines
C1,Cy,...,Cy,. Each processor i has the ability to test ¢; lines per day and there is a list
L; which contains the communication lines that processor ¢ is able to test. Subject to these
constraints we would like to be able to test all the communication lines every day. A testing
schedule determines for each processor the lines it should test. Find a testing schedule or
determine that no schedule can test all lines in a single day.

c¢) Same as b) but find the minimum number of days to test all lines (and a schedule which
achieves it).



