
Software Engineering
Research

Premkumar Devanbu, Zhendong Su
Raju Pandey, Ron Olssson,

Hao Chen, Karl Levitt

What makes us tick?
GOAL: Produce software at lower cost, with
fewer people, at a faster schedule.

Approach: Improve software engineering
activities:

Requirements

Design

Coding

Quality Control

Example results.
“I’ve invented a new language to program security in
distributed systems that allows 3rd party development”

“I’ve invented a new tool which automatically finds
defects in programs that query databases”

“I’ve discovered a way to predict defect rates in java
classes based on their structure”

“I’ve discovered a new way to organize software teams
to produce IT applications faster, cheaper, and better”

“I’ve discovered that what we believe about n-version
programming is wrong, wrong, wrong”.

What’s the field like?
Source of problems.

Solutions come from related fields:

programming languages+compilers

algorithms

formal methods,

social science

What goes on here?
Devanbu: programming models, middleware,
software quality, open-source development.

Su, Chen, Levitt: Software Quality, analysis,
theory of programming languages.

Pandey: programming models for new
paradigms (sensor networks)

Olsson: Concurrent Programming.

The Lay of the Land
Major conferences: SIGSOFT, ICSE (~15%
acceptance rate).

Major Journals: ACM TOSEM, IEEE TSE,
Software Practice & Experience.

Major Universities: UCI, CMU, MIT, Toronto,
UBC, Waterloo, UT Austin, UC Davis, USC, U
Washington, U Virginia, U Colorado.

Faculty Jobs: Usually more openings than
candidates.

Main topics.

Models: theories, abstractions (e.g.,
UML, Z, Formal Logic, Petri nets)

Methods: Procedures (e.g., Extreme
Programming, coverage testing)

Tools: Automation/Support (e.g.,
debuggers.

Improving Software Cost, Quality,
Interval

Problem: How do we develop distributed,
heterogeneous systems?
Solution: Easier programming w/CORBA
How?

* Interface definition Language
* Tools to generate code
* Type-checked development.
* Run-time environment support

Validation:
Examples, Comparison with old way. Performance
evaluation.

Example: Model

Problem: Developing concurrent systems is hard, e.g.,
device drivers
Solution: Find defects automatically in source code.
How?

* Abstract a finite-state model
* Describe the desired property
* Check the finite model.

Validation:
* Can we prove that it is sound?
* How efficient is it? Scaling?
* What is the rate of false positives?

Example: Tool

Problem: Allocating scarce inspection time.
Solution: Find defect-prone elements of systems.
How?

* Identify process goal & metric.
* Define plausible predictive product metrics
* Make stastical prediction.

Validation:
* Theoretically validate metrics (axiomatics).
* statistical (non-parametric?) validation using
historical data.

Example: Process

So, where is the field going?
What are the interesting problems?

How do I find a thesis topic?
How do I publish papers?

How do I find an academic job?

Burning Issues

 Separation vs. crosscutting

 Abstraction vs. Performance

Protection vs. performance

Agility, flexibility vs. Reliability, Quality.

Precision vs. Scaling

Separation vs. Crosscutting
Goal: Separation of concerns (why?)

Problem: Some concerns are hard to decompose
(e.g., Security, Fault-tolerance, billing etc affect
all components).

Approaches: Aspect-Oriented programming,
Reflection, Monadic programming, Mixin Layers

Issues: Correctness, Efficiency,
Understandability.

Abstraction vs. Performance

Goal: Brevity, Comprehensibility, SoC

Problem: Performance, and inflexibility.

Approaches: multi-layer optimization, partial
evaluation.

Issues: Correctness, ease of use.

Protection vs. Performance

Goal: Protect critical resources

Problem: Inflexibility.

Approaches: “safe” extension mechanisms, such
as sandboxes.

Issues: Correctness, power.

Agility and Flexibility

vs. Reliability and quality.

Goal: The software process must be fast,
flexible, and still be well controlled.

Problem: Control inhibits speed.

Approaches: Extreme Programming, Open
source Development.

Issues: Applicability of these processes? Why
do they work (specially open-source)

Precision vs. Scalability.

Goal: Build analysis tools that find defects
accurately.

Problem: Undecidability & combinatorial blow-
up.

Approaches: Build sound but imprecise tools.

Issues: Improving precision. Specialization.
Interactivity. Better algorithms, hardware.

Succeeding in Research
Read, read, read.

Be a fashion plate and a name dropper.

Write Code. Hack. Read Code.

Attend Seminars: Systems, PL, but also
security and theory.

Talk, argue, canoodle, discuss.

Question everything, and everyone.

Writing Papers-1

The Role of Conferences.

The reviewing process in conferences.

The burden on the authors. Must write
with extreme care!!!! Wordsmith!!

Give your advisor a draft 2 weeks before
the due date.

Writing Papers 2.

Outline: Introduction, example(s), broad
related work, solution, evaluation, narrow
work, conclusion.

Role of each section.

Writing Papers -3

Introduction: Problem explained in broadest
setting (clarify, don’t oversell).

Example: Be current, simple, and to the point.

Broad related work: Why is the example not
solved?

Contribution: Explain model, method, and tool.
Explain roles (new ones).

Writing Papers-4

Evaluation: consider the culture of your audience!!
Formal, Examples, Performance studies, statistical
validity etc.

Close Related work: Be very precise, and non-
judgement. Be shamelessly diplomatic. Look at the
program committee, don’t be stupid.

Conclusion. Summarize carefully, don’t oversell. Give
web page for some software (even prototype).

Finding Academic Jobs

Plan your graduation time carefully, based on
your ambitions.

Talk to your advisor about an external member.

Go to workshops, conferences, chat up the big
wigs. Ask them for letters.

Have your advisor email colleagues in target
universities.

Summary
Exciting, inter-disciplinary field, requiring
“lateral” thinking.

The “action” is in managing tradeoffs of
current interest.

Conference papers are critical, and not
easy.

Academic job market is stable, and good.

