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Abstract

We study variants of Kleinberg’s small-world model
where we start with a k-dimensional grid and add a
random directed edge from each node. The probability
u′s random edge is to v is proportional to d(u, v)−r

where d(u, v) is the lattice distance and r is a parameter
of the model.

For a k-dimensional grid, we show that these graphs
have poly-log expected diameter when k < r < 2k, but
have polynomial expected diameter when r > 2k. This
shows an interesting phase-transition between small-
world and “large-world” graphs.

We also present a general framework to construct
classes of small-world graphs with Θ(log n) expected
diameter, which includes several existing settings such
as Kleinberg’s grid-based and tree-based settings [15].

We also generalize the idea of ‘adding links with
probability ∝ the inverse distance’ to design small-world
graphs. We use semi-metric and metric functions to
abstract distance to create a class of random graphs
where almost all pairs of nodes are connected by a path
of length O(log n), and using only local information we
can find paths of poly-log length.

1 Introduction

Small-world networks are being used and studied in
many disciplines, including the social and natural sci-
ences. These networks possess a striking property, the
so called small-world phenomenon, also often spoken of
as “six degrees of separation” (between any two people
in the United States)1. Since many real networks ex-
hibit small-world properties, a number of network mod-
els have been proposed as a framework to study this
phenomenon. Watts and S. Strogatz [24] introduced
a random graph setting to model certain small-world
graphs. This model features two main properties, low
average path length and significant clustering. We use
small-world graphs to mean graphs with poly-log (ex-
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1Milgram discovered this in his pioneering work in the 1960’s

[22], and recent work by Dodds et al. suggests its still true [9].

pected) diameters, to focus on this property of small
separation between nodes.

Recently, Kleinberg [16] proposed a family of small-
world networks to study another compelling aspect of
Milgram’s findings: a greedy algorithm using only lo-
cal information can construct short paths. Kleinberg
adds directed long-range random links to an undirected
n×n lattice network. The long-range links have a non-
uniform distribution which favors arcs to close nodes
over more distant ones. These graph models have gen-
erated considerable interest and recent work. Appli-
cations have been found using Kleinberg’s or related
small-world models to decentralized search protocols in
peer-to-peer systems [21, 25], and gossip protocols for a
communication network [14].

Kleinberg’s model starts with a simple base graph
and randomly adds new arcs. The base graph models
local “contacts”. The additional random links model
long-range contacts which can connect distant compo-
nents. This greatly shrinks the diameter of the graph.
Thus we see a promising formula: a simple base graph
plus some random links can add nice properties (such
as Kleinberg’s setting with expected small diameter and
short greedy paths for all s − t pairs). Kleinberg’s set-
ting is a very specific one, so we ask: what are the essen-
tial features, underlying the distribution of random links
and the grid structure which produce these nice prop-
erties? We address this question in two ways. First, we
mostly complete the picture of the diameter problem in
Kleinberg’s grid-based setting by identifying the criti-
cal point where the graph changes from expected poly-
log to expected polynomial diameter, depending on how
much we favor links to close nodes. Then we construct
a framework, which starts with an arbitrary base graph
and some general rules for adding random arcs. We
then refine our model to identify properties which lead
to small expected diameter. Further refinement allows
us to find short paths using local information only.

Some of our graphs have small expected diameter,
yet need not use a distance measure to describe the ran-
dom link distribution2. Kleinberg’s models (grid-based

2Thus, links no longer favor close nodes over distant nodes.



setting [16], tree-based and group-induced settings [15])
and several other well-known small-world graphs fit our
abstract models and thus can be analyzed using our gen-
eral results on diameter and routing. Moreover, we in-
troduce or generalize several techniques used for bound-
ing a graph’s diameter.

We briefly review Kleinberg’s setting then summa-
rize our results in the next subsection. Kleinberg’s basic
model uses a two-dimensional grid as a base with long-
range random links added between any two nodes u and
v with a probability proportional to d−2(u, v), the in-
verse square of the lattice distance between u and v. In
the basic model, each node has an undirected local link
to each of its four grid neighbors and one directed long-
range random link. A straightforward extension of this
basic model is to have multiple random links from each
node and use a k-dimensional grid for any k = 1, 2, 3 . . .;
also use an inverse rth power distribution (of the ran-
dom links), for any real constant r, instead of r = 2.

In [20], we proved a tight Θ(log n) bound for the
expected diameter of Kleinberg’s extended model: for a
k-dimensional grid and an inverse rth power distribution
when 0 ≤ r ≤ k, i.e. for 0 ≤ r ≤ 2 in the 2-D case.
However, the diameter problem for r > k was open
before this paper. Note that the complexity of greedy
routing in Kleinberg’s grid-based setting has already
been analyzed. For r = k it takes Θ(log2 n) expected
steps while for r 6= k, greedy routing takes expected
polynomial time[16, 2, 20, 11].

1.1 Our results First, we mostly complete the anal-
ysis of the diameter of Kleinberg’s grid-based setting.
For a k-D grid, we show that the model still has poly-log
expected diameter when k < r < 2k, but has polyno-
mial expected diameter when r > 2k. However, interest-
ingly enough, the case r = 2k is still open, though our
initial experiments suggest that the model is a large-
world. In particular, for Kleinberg’s 1-D model, for
any r < 2 the expected diameter is upper-bounded by
poly-log functions (O(log n) for r ≤ 1), however, for
r > 2, the expected diameter can be lower bounded
by a (low-degree) polynomial function. This shows a
phase-transition between small-world and “large-world”
graphs.

We also present a framework to construct several
classes of small-world graphs with Θ(log n) expected
diameter. These include several existing settings such as
Kleinberg’s grid-based and tree-based settings [15]. Our
framework starts with a very abstract class of random
graphs, then we gradually add in conditions to achieve
more refined classes, which are more likely small-world
candidates.

We also design graphs with poly-log greedy-like

paths. Again, we start with a general class, based
on an abstract semi-metric function (abstracted from
the use of distance), and then add in refining criteria
to construct a hierarchy of classes with interesting
properties. As a result, we obtain an abstract class of
random graphs such that under some easy conditions,
almost all pairs of nodes are connected by a path of
length O(log n), and using only local information we
can find paths of expected poly-log length.

1.2 Related work There has been considerable work
on the small-world phenomenon. See [17] for early sur-
veys and [16] for a more recent account on modeling
small-world networks. Before Kleinberg’s model, Watts
and Strogatz [24] proposed randomly rewiring the edges
of a ring lattice each with a probability parameter p.
Watts and Strogatz observed that for small p the model
reflects many practical small-world networks with small
typical path length and a non-negligible clustering coef-
ficient. Kleinberg has generalized his basic model in sev-
eral ways in [15] including a generalization that encom-
passes both lattice-based and tree-based (“taxonomic”
or “hierarchical”) small-world networks.

The diameter of random graphs is a classic problem
[5, 6, 7, 10] but most results use uniformly distributed
arcs. Bollobas and Chung [6], study a graph model
very similar to Watts and Strogatz in [24] with the
nodes of a cycle (or a “ring”) randomly matched to
form additional long-range links. The closest diameter
work with non-uniform arc probabilities is on long-range
percolation graphs (LRPGs) which have been used to
study physical properties. As in Kleinberg’s model,
a grid with (undirected) local links is augmented by
long-range random links whose probability is inversely
related to their distance. Note that in contrast to
Kleinberg’s model, the added links are undirected,
and the degree of a node is not fixed. Thus the
analysis techniques for LRPGs are somewhat different
than those to analyze Kleinberg’s and related models.
Benjamini and Berger study the diameter of 1-D LRPGs
[3] and Coppersmith et al. extend this to k-D grids [8].
Both papers prove diameter results which show how
the expected diameter changes as the arc probability
parameters change. Biskup improves these results by
proving tighter bounds [4]. These papers show there
are critical points where the expected diameter changes
from constant, to poly-log and then to polynomial as the
probability parameter changes. We show some similar
transitions occur in Kleinberg’s setting.

There have also been several recent papers which
analyze greedy routing in other small-world like net-
works [1, 2, 15, 18, 20, 11]. Though our focus is on
diameter results, we show how to incorporate greedy-



like routing (to find short paths) into an abstract class
which already has expected O(log n) diameter.

The structure of the paper. We present new
diameter results for Kleinberg’s grid settings, which
complement previous diameter results. In §3 we start
with the most basic setting, i.e. the (one-dimensional)
cycle augmented by random links.

We then generalize our approach in §4 (for ana-
lyzing Kleinberg’s grid model) and introduce several
abstract families of random graphs which can be con-
structors for small-worlds. From these abstract fami-
lies, by adding some proper additional conditions, we
obtain different classes of small-world graphs with poly-
log expected diameter. In §5 we create classes with short
paths which can be found by decentralized algorithms
(using local information only), and present a general-
ization of §3’s results.

2 Preliminaries

To generalize Kleinberg’s small-world models, we de-
velop an abstract class of random graphs, which includes
Kleinberg’s small-world settings (in [16, 15]). We then
use this abstract class as a platform to create a general
framework to analyze the diameter (and other related
issues) in a variety of settings.

Consider the following random assignment (or
matching) operation: for a given node u in a graph G,
make a random trial under a specific distribution rule
τ to select another node v. We write this as v

Rτ← u
or v = Rτ (u). For example, in Kleinberg’s basic grid
setting, τ is defined as having v

Rτ← u with probability
proportional to the inverse square of the lattice distance
between u and v, i.e. Pr[v Rτ← u] ∝ d−2(u, v). We can
think of a random graph constructor using this opera-
tion which forms a family of random graphs. We use a
given base graph H and a compatible graph constructor,
where each additional (u, v) link (with v

Rτ← u) is called
a random link. Random links are generated for a node,
not for pairs of nodes as in traditional random graphs 3.
This operation is implicitly used in Kleinberg’s small-
world models [16, 15].

We restrict the distribution rules (τ) we use to
ones which have the following property: each Rτ call
performs an independent trial. Multiple Rτ calls on the
same input node (u), also are independent trials. We
now define an abstract class of random graphs, which
includes all of Kleinberg’s small-world settings.

3Even when we use undirected random links, we can consider
that: each node u generates and, so, “owns” certain random links,
while some other random links also incident to u are not owned
by u but by some other nodes (which generated these links)

Definition 1. Given a set of undirected base graphs
H, a distribution τ and a constant integer q ≥ 1,
a Family of Random Graphs FRG(H, τ, q) consists of
graphs, each of which is a base graph H ∈ H plus q out-
going random links4 generated under distribution τ for
each node.

All the families of random graphs we consider in
this paper are FRG families. For example, Kleinberg’s
basic grid model ([16]) is a FRG(H, τ, q) family, where
H consists of all n× n grids (n = 1, 2, 3 . . .), q = 1, and
τ is the inverse square distribution. Note that there is
no restriction on the set of fixed edges E in the base
graphs. For example, the fixed edges can be the local
links in Kleinberg’s grid model, a complete graph, or
nothing at all as in Kleinberg’s tree-based model.

We now consider some useful basic lemmas, the
proofs of which are fairly simple and omitted. Consider
a family F = FRG(H, τ, q) and a graph G ∈ F , which
has base graph H = (V, E).

Lemma 2.1. For any graph G from a family
FRG(H, τ, q), any two disjoint subset of vertices
S and T chosen without any knowledge of the random
links from S, the probability of having a random link
from some node in S to at least one node in T , is
Pr[S → T ] ≥ 1− e−qε|T ||S| (where ε = ε(S, T ) denotes
the minimum value of Pr[Rτ (u) = v] for all u ∈ S and
v ∈ T ).

We use lemma 2.1 where usually the sizes of S and T
are large enough so that ε|T ||S| = Ω(log n) and thus,
for some θ > 0, Pr[S → T ] ≥ 1− O(n−θ), which tends
to 1 when n goes to the infinity. So, almost surely, T is
apart from S by just one random link.

Lemma 2.2. If each of n events {Bi}n
i=1 occurs with

probability at least 1 − p, where p < 1/n, then the
combining event ∩n

i=1Bi occurs with probability at least
1− np

Note that lemma 2.2 applies even if the Bi are not
independent.

3 Diameter transitions in Kleinberg’s model

For simplicity, we first look at the 1-D setting and
then extend our results to more general settings. De-
fine C(r, n) as the setting where nodes are labeled
0, 1, 2, . . . , n − 1 and each node i has 2 undirected lo-
cal links: to (i − 1) mod n and (i + 1) mod n for
0 ≤ i ≤ n − 1. Each node i also has one directed
random link to some node j 6= i. The probability its

4They are directed by our default assumption.



Figure 1: Iu
x is ξ-complete with directed random edges

crossing between any two subsegments of length xξ

random link is to j, is proportional to |i − j|r, where
r ≥ 0 is a parameter to be specified. For 0 ≤ r ≤ 1 this
cycle setting is known to have expected θ(log n) diame-
ter [20]. We now consider the diameter of C(r, n) when
r > 1.

3.1 The C(r, n) setting with 1 < r < 2.
We present our notation and basic definitions, then a

sketch of our basic approach, and finally our theorems
and proofs in detail.

For r > 1, the normalized coefficient L =
1/(2

∑n/2
d=1 d−r) = θ(1); in fact, 1

2Cr
< L < 1

Cr
for n

large enough, where Cr =
∑∞

i=1 i−r is a constant de-
pending on r only. So, Pr[i → j] = L|i − j|−r =
θ(|i − j|−r). Let Il(u) or Iu

l denote a ‘segment’ of
length l, starting at node u, i.e. Iu

l = {u, (u + 1)
mod n, . . . , (u + l − 1) mod n}.

Consider segment Iu
x of length x for some arbitrary

node u. Let 0 < ξ < 1. Divide Iu
x into x1−ξ

(disjoint) subsegments of length xξ. Let Dξ(Iu
x ) =

{J1, J2, . . . , Jx1−ξ} be this set of subsegments, i.e. Jk =
Ixξ(u + (k − 1)xξ) for 1 ≤ k ≤ xξ. For simplicity, we
assume xξ, x1−ξ and the like are integers.

Definition 2. For each node u, Iu
x is ξ-complete if for

any ordered pair of segments (Ji, Jk) from Dξ(Iu
x ), there

is an edge from Ji to Jk
5(see figure 1).

Let δ(Iu
x ) be the diameter of the subgraph induced

by nodes in the segment Iu
x . Here, δ(Iu

x ) is a random
variable with a value for each instance of our random
graph (once the random links are set). E[δ(Iu

x )] is
independent of position u, so we let δx = E[δ(Iu

x )].
The main idea. In order to upper bound the

diameter of our random graph in this 1-D setting, we
use a probabilistic recurrence approach6. We establish
a (probabilistic) relation between the diameter of a

5If we think of a super-graph with the Ji’s as it’s nodes then
these crossing links make it a complete graph

6Although our approach is similar to Karp’s [13], his theorems
necessity conditions are not met here.

segment and that of a smaller one. In particular, we
relate δ(Ix) (the diameter of a segment of length x) to
δ(Iy), where y = xξ for some ξ ∈ (0, 1). Intuitively,
with high probability, δ(Ix) is bounded by a constant
multiple of δ(Iy). Thus, we use standard recurrence
techniques to bound δn (the graph’s expected diameter)
based on δx0 for a small initial length x0 (so δx0 is upper
bounded by a poly-log function of n).

We use this crucial observation: Ix is almost surely
ξ-complete for x and ξ < 1 large enough. So, δ(Ix)
is almost surely not larger than twice the maximum
diameter of any subsegment in Dξ(Ix). We formalize
the above ideas in the following lemmas and then prove
our main theorem. The next two results follow directly.

Lemma 3.1. If a segment Iu
x is ξ-complete then

δ(Iu
x ) ≤ 2 max

J∈Dξ(Ix)
δ(J) + 1.

Corollary 3.1. If Iu
x is ξ-complete for each u =

0..n-1 then max
u=0..n−1

δ(Iu
x ) ≤ 2 max

u=0..n−1
δ(Iu

xξ) + 1.

Note that for 0 < ξ < .5, Iu
x is not ξ-complete for

any u. Since xξ, the number of random links from nodes
in a subsegment Ji ∈ Dξ(Ix), is smaller than x1−ξ − 1,
the number of other subsegments Jk ∈ Dξ(Ix).

Lemma 3.2. For r/2 < ξ < 1 (1 < r < 2),
Pr[Iu

x is ξ-complete, ∀u = 0..n− 1] ≥ 1− n−2

for x ≥ ĉ ln
1

2ξ−r n, where ĉ = (10Cr)
1

2ξ−r .

Proof. We need to lower bound the probability of
the event that there exists an edge connecting Ja

and Jb for all possible pairs (Ja, Jb). Using lemma
2.1, Pr[Ja → Jb] ≥ 1− e−qε|Ja||Jb|, where ε = ε(Ja, Jb).
Note, |Ja| = |Jb| = xξ, ε(Ja, Jb) ≥ Lx−r > .5Lx−r/Cr

and q = 1, so

(3.1) Pr[Ja → Jb] ≥ 1−e−Lx−r×x2ξ ≥ 1−e−.5x2ξ−r/Cr

Ix is ξ-complete if there exists an arc between Ja

and Jb for all possible pairs (Ja, Jb). The number
of such pairs is < x2(1−ξ), hence using lemma 2.2,
Px = Pr[Ix is ξ-complete] ≥ 1− (e−.5x2ξ−r/Cr × x2−2ξ).
Let E be the event that Iu

x is ξ-complete, ∀u = 0..n−1.
Again, using lemma 2.2:
Pr[E] ≥ 1− n(1− Px) ≥ 1− (ne−.5x2ξ−r/Cr × x2−2ξ).
Now, for x ≥ (10Cr)

1
2ξ−r × ln

1
2ξ−r n, clearly

ne−.5x2ξ−r/Cr ≤ ne−5 ln n = n−4, hence
Pr[E] ≥ 1− (n−4 × x2−2ξ) ≥ 1− n−2

since x2−2ξ < n2.

Theorem 3.1. For any r such that 1 < r < 2, there
exists a constant β such that the expected diameter of
C(r, n) is O(logβ n).



Proof. Since r < 2 we can choose r/2 < ξ < 1. Let φ(x)
be a random variable s.t. φ(x) = max

u=0..n−1
δ(Iu

x ). φ(x) is

determined for each instance of our random graph. If
Iu
x is ξ-complete for all u = 0..n− 1 then from corollary

3.1, φ(x) ≤ 2φ(xξ) + 1. Thus from lemma 3.2, for
x ≥ x0 = (10Cr)

1
2ξ−r log

1
2ξ−r n,

(3.2) Pr[φ(x) ≤ 2φ(xξ) + 1] ≥ 1− n−2

We can use a standard recurrence technique to
upper bound φ(n), based on φ(x0) and n only.

Define the sequence {xi}t+1
i=0, where xi+1 = xb

i with
b = 1/ξ, x0 = c log

1
2ξ−r n, and

t = blogb(logx0
n)c = b log( log n

log x0
)

log b c = log log n
log b + 0(1)

Thus xt ≤ n < xt+1. Now we look closer at
this sequence {φ(xi)}t

i=0 and use (3.2) to upper bound
the last term (which differs from φ(n) by a constant
multiple), based on the first term and t. We claim that
each of the events Ei : “φ(xi) ≤ 2φ(xi−1) + 1”, i =
1, 2, . . . , t and Et+1 : “φ(n) ≤ 2φ(xt) + 1” occurs with
probability at least 1 − n−2. The first t events can be
justified directly from (3.2), while we can also easily
extend our proof of lemma 3.1 to justify the last event.
Let E be the event that E1, E2, . . . , Et+1 all occur.
Using lemma 2.2, E occurs with probability at least
1− (t + 1)× n−2 ≥ 1−O(n−1).

It is easy to see that event E implies φ(xi) ≤
2iφ(x0) + 2i − 1, ∀i = 1..t and thus,
φ(n) ≤ 2t+1φ(x0) + 2t+1 − 1 ≤ O((log n)logb 2)× φ(x0).
Note that φ(x0) ≤ x0 = (10Cr)

1
2ξ−r log

1
2ξ−r n. That is,

Pr[δ(In) ≤ c logβ n)] ≥ 1−O(n−1)
where β = log1/ξ 2 + 1

2ξ−r and c depends on r and ξ

only. Thus, Pr[δ(In) ≤ O(logβ n)] tends to 1 when n
goes to infinity, and almost surely δ(In) = O(logβ n).

Note that our bound on β grows rapidly as r
approaches 2.

3.2 The C(r, n) setting with 2 < r

Theorem 3.2. For r > 2, C(r, n) is a ‘large’ world with
expected diameter Ω(n

r−2
r−1−o(1)).

Proof. Let 1
r−1 < γ < 1. For any node i, the probability

that i’s random contact is at most a distance nγ from i,
is 1−O(

∑n/2
d=nγ d−r) = 1−O(n−γ(r−1)). Using lemma

2.2, the probability that all random links have length at
most nγ , is ≥ 1−n×O(n−γ(r−1)) = 1−O(n1−γ(r−1)).
Since 1

r−1 < γ, this probability tends to 1 when n goes
to infinity. Thus the diameter is at least n

nγ = n1−γ with
overwhelming probability (tending to 1 when n goes to
infinity). So, the expected diameter is Ω(n

r−2
r−1−o(1))

Figure 2: A path from s to t

3.3 Extended settings
We can extend our results to the setting without

wraparound and to the general k-D setting for k =
1, 2, 3 . . . The general k-D setting is still a small-world
when r < 2k but a ‘large-world’ when r > 2k. We only
need to adapt our basic proof above so that equation
(3.1) is still maintained, and hence the rest of our
arguments still apply. For the general k-D setting,
we use k-D hypercubes instead of segments as in 1-D
setting. Similarly, we also introduce a decomposition of
a hypercube of size x(in each dimension) into smaller
sub-cubes (of size xξ) and thus call the hypercube ξ-
complete if there is a random edge from any sub-cube
to any other. Thus, we can reuse most of the proof
above except some extra calculation (say, for the sizes
of some k-D cubes). See [23] for full proofs.

Note that the case r = 2k is open, however initial
experiments (for the 1-D setting only) suggest that the
setting has polynomial expected diameter.

4 Constructing O(log n) diameter graphs with
non-uniform random links

To analyze the shortest path between a source node
s and a destination node t, we construct two subset
chains, which can be viewed as two trees rooted at s
and t, and then show they intersect. Each subset in
s’s subset chain contains nodes which can be reached
directly from the preceding subset, and hence, can be
reached from s. The subset chain from t is similar, but
contains nodes with links towards t. To show that the
shortest s− t path has length O(log n), the main idea is
to show that each subset chain grows exponentially in
size before they intersect7 (see figure 2).

7Alternatively, each subset chain grows exponentially to a
threshold, so they intersect with high probability.



Exponential growth will be likely if each time we
grow a new subset, with high probability more than one
link from each node leaves the current subset. This was
true in Kleinberg’s grid setting [20] (we called this: “link
into or out of a ball” property). We now include this
feature to refine our basic class FRG(H, τ, q). Recall
that, a family of random graphs FRG(H, τ, q) consists
of graphs, each of which is a base graph H ∈ H
plus at least q out-going random links generated under
distribution τ for each node.

Definition 3. For constants µ > 0 and ξ > 0, family
F = FRG(H, τ, q) meets ‘the (µ,ξ) expansion criterion’,
or F is (µ,ξ)-EXP , if ∀H = (V,E) ∈ H, with n = |V |:

(4.3) ∀u ∈ V, ∀C ⊂ V, |C| < nµ : Pr[v Rτ← u : v /∈ C] ≥ ξ

For example, from [19], it is easy to verify that
Kleinberg’s grid setting with wrap-around distance is
(µ,1 − µ − o(1))-EXP for any fixed positive constant
µ < 1. This criterion supports diversity and fairness
in the distribution of random links: For a random link
from any node, no small set of vertices (size ≤ nµ) can
take most of the chance to have this link come into it.

Definition 4. (Type µ-Expansion) For a constant
µ > 0, type µ-Expansion contains all the families
FRG(H, τ, q) which meet (µ,ξ)-EXP for some ξ > 1/q.

We define χ, called an ‘expansion function’, as
follows. Given any u ∈ V , this operation will call
operation Rτ q times. Also, let χ(u) denote the set of
vertices from these q Rτ calls. Thus the random links
for graph G are formed by performing operation χ on
each node. For any set S: χ(S) =

⋃
u∈S χ(u).

Consider a family F of type µ-Expansion. Let
β = qξ (so β > 1). For any node u and set C of size
less than nµ − q, which is determined before χ(u) is
known, the expected number of fresh elements generated
by χ(u) that do not belong to C is greater than β:
E[ | χ(u)− C | ] > β > 1. Since χ(u) ‘contributes’ more
than one expected fresh element outside of C, χ can be
used to generate a chain of subsets from a small initial
subset such that with high probability, the subsets will
quickly grow to size Θ(nµ).

4.1 The out-going subset chain Let F be a µ-
Expansion family, and G = (V, E) be an arbitrary
graph from F . Now, from an arbitrary initial set
S0 ⊂ V , we construct a chain of subsets {Sk}, namely
the out-going subset chain with respect to the initial set
S0, s.t. Sk+1 = χ(Sk)−∪k

i=0Si; k = 1, 2, 3, . . . Thus, Si

is the nodes at distance i from S0 using random links.
The following results for µ-Expansion families show the
subset chain grows rapidly if S0 is large enough.

Lemma 4.1. ∀C, S ⊂ V s.t. S ⊂ C, |C| ≤ α = θ(nµ): if
|S| = Ω(log n), almost surely |χ(S) − C|/|S| > γ for a
constant γ > 1. Also, ∃γ > 1, ∀ θ > 0,∃c > 0:

|S| > c log n ⇒ Pr[ |χ(S)−C|
|S| > γ] = 1−O(n−θ)

The above lemma (see [23] for proof) provides a
probabilistic lower bound γ on the growth rate of the
subset chain in each early step (by choosing C = ∪k

i=0Si

to apply the lemma in each step). This growth rate can
be maintained as long as the subset sizes are still under
a threshold. For any S0 ∈ V with size Ω(log n), the
subset chain originating from S0 will almost surely grow
exponentially in size until it reaches size α = θ(nµ).
Also, for any θ > 0, by choosing a sufficiently large
constant c s.t. |S0| > c log n, Pr[|Sk| ≥ α] = 1−O(n−θ)
for some k = O(log n). Moreover, this can be true for
any given θ > 0 by choosing c large enough.

4.2 The in-coming subset chain We now con-
struct a subset chain, based on the random links coming
to the sets of the chain. We use an ‘expansion function’
ψ, which is a counterpart of χ, so we can reuse the
formalism used in §4.1 on the out-going subset chain
and obtain similar results. Function ψ is not state-less
as χ was. For any subset of vertices D and a node
u ∈ V we define ψ(u,D) to return the set of all nodes
v /∈ D s.t. v has a random link to u. As before,
ψ(T,D) =

⋃
u∈T ψ(u,D) for any subset T . Now, from

an arbitrary subset T0 ⊂ V , we can construct a chain of
subsets {Tk}, namely the in-coming subset chain with
respect to the initial set T0, s.t. Tk+1 = ψ(Tk,D) for
k = 1, 2, 3, . . ., where D = ∪k

i=0Tk. Similar to definition
3, we have:

Definition 5. For constants µ > 0 and ξ > 0, family
F meets ‘the (µ,ξ) incoming expansion criterion’, or F
is (µ,ξ)-IE, if the following is satisfied.

(4.4) ∀D : |D| < nµ, ∀u ∈ D : Pr[∃v /∈ D : Rτ (v) = u] > ξ

Similarly as with µ-Expansion, for a fixed µ > 0,
we define type µ-IncExpansion, which includes all
the FRG(H, τ, q) families which meet (µ,ξ)-IE where
ξ > 1/q. For a µ-IncExpansion family, lemma 4.1
holds if we replace the use of function χ by that of
function ψ and subset C by subset D (8). There is
an interesting implication between these two expansion
criteria for a large class of families. We call a family
of random graphs, using a distribution τ , δ-symmetric
(or just symmetric if δ = 1) for some constant δ ≥ 1, if
Pr[Rτ (v)=u]
Pr[Rτ (u)=v] ≤ δ for all pairs of nodes (u, v). It is easy

8The constructions of both subset chains share the same
formalism



to see that Kleinberg’s grid settings (using the inverse
power distributions) have this property, and they are
symmetric if wrap-around distance is used.

Lemma 4.2. If family F is (µ,ξ)-EXP , for 0 < µ, ξ <
1, and is δ-symmetric for some δ ≥ 1 then F is
(µ,1− e−ξ/δ)-IE.

Proof. [Proof(sketch)] We need to prove (4.4) holds.
Let p(u, v) = Pr[Rτ (u) = v] and F be the event
that ∃v /∈ D : Rτ (v) = u. The lemma is shown
as Pr[F ] =

∏
v/∈D(1 − p(v, u)) ≤ ∏

v/∈D e−p(v,u) =
exp{−∑

v/∈D p(v, u)} ≤ exp{− 1
δ

∑
v/∈D p(u, v)} ≤ e−

ξ
δ .

Note that
∑

v/∈D p(u, v) = Pr[∃v /∈ D : Rτ (u) = v] ≥ ξ.

4.3 Abstract classes of small-world graphs We
refine the above families by adding conditions to obtain
small-world graphs. If our graph is from a family
of type µ1-Expansion and µ2-IncExpansion for some
0 < µ1, µ2 < 1 then, given any source s and destination
t, we can use the following strategy to construct a log n-
length path from s to t (see figure 2). First, we want a
connected subset S0 containing s and T0 containing t of
Ω(log n) size in the base graph H. We then construct
the out-going subset chain from S0 and the in-coming
subset chain from T0. Our above results show that,
with overwhelming probability, there exist subsets Sk

with size θ(nµ1) and Tl with size θ(nµ2) s.t. any node
in Sk can be reached from S0 by O(log n) links, and
T0 from Tl by O(log n) links. We now consider proper
conditions so we can easily reach Tl from Sk.

If ε = ε(τ), the minimum value of Pr[Rτ (u) = v]
for all u 6= v, is large enough, then almost surely there
is an arc from Sk to Tl (or they intersect).

Definition 6. (Expansion Family) A FRG(H, τ, q)
is an Expansion family if it is (µ1,ξ)-EXP and
(µ2,ξ)-IE for some constants ξ > 1/q, µ1, µ2 > 0, and
ε(τ) = Ω(n−µ3) for a constant µ3 < µ1 + µ2.

We now show that a graph from an Expansion
family almost always has an arc from Sk to Tl (or they
already intersected). We can assume all the nodes in Sk

are fresh (we do not know their random links yet9) and
hence, using lemma 2.1, Pr[Sk → Tl] ≥ 1−e−qε|Tl||Sk| ≥
1−e−Ω(nµ1+µ2−µ3 ) ≥ 1−O(n−1), which tends to 1 when
n goes to the infinity.

9We omit a conditioning issue: if we construct the s subset
chain (s-SSC) first then the growth of the t subset chain (t-SSC)
is conditioned on the existence of s-SSC and vice versa. Thus, we
need to add ∪k−1

i=0 Si to D (§4.2) or ∪l−1
i=0Ti to C (4.1). Therefore,

if µ1 > µ2 then we construct t-SSC first, otherwise s-SSC first.

The graphs from an Expansion family 10 are
small-worlds, i.e. their expected diameter is poly-log
in n, as long as each node is rich enough in neighbors in
the base graph to form large enough initial subsets (i.e.
S0, T0). Without this final condition, however, often
these graphs are not connected. If there are no edges in
the base graph (E = ∅) then even with the added ran-
dom edges, the graphs can be unconnected; an example
will be presented in the next subsection.

We now add the notion of neighboring in the
base graphs. A node u is called k-neighbored for
some k ∈ N if u belongs to a connected component
of size k in the base graph. A base graph H =
(V, E) is called k-neighbored if all the nodes are k-
neighbored. A connected graph is k-neighbored for all
k ≤ |V | − 1. For k large enough, k-neighbored graphs
allow us to construct large enough initial subsets. The
next theorem now follows fairly directly11.

Theorem 4.1. For any two nodes s, t in a graph of an
Expansion family , if s and t are c log n-neighbored
for any constant c > 0 then there almost surely exist
O(log n)-length paths between s and t. An Expansion
family , using (c log n)-neighbored base graphs where
c > 6qξ

(qξ−1)2 , has expected diameter O(log n).

Thus, a graph from an Expansion family almost
always consists of a giant component with diameter
O(log n) and perhaps some small components of size
O(logn). There are perhaps random (directed) links
between the components (but only in one direction
between a given pair).

Using super-nodes. We now consider random
graphs which use log n-neighbored base graphs.

Theorem 4.2. Consider a family FRG(H, τ, q), which
is (µ1,ξ)-EXP and (µ2,ξ)-IE for some constants
ξ, µ1, µ2 > 0, where ε(τ) = Ω(n−µ3) for some con-
stant µ3 < µ1 + µ2, and all base graphs in H are log n-
neighbored. There almost surely exists a path of length
O(log n) between any two nodes (for n large enough).

Proof. This theorem is a simple corollary of the previous
theorem if q is s.t. ξ > 1/q. However, for q < Q = d1/ξe
the theorem still holds. The main idea is to form
super-nodes with Q random links. The log n-neighbored
property assures that we can always partition the graph
into super-nodes each of which is a subgraph of constant
diameter and has at least Q random links. The length
of a path constructed here differs by only a constant
from before (when we have q ≥ Q).

10Note that we can construct similar classes by using µ-
Expansion and δ-symmetric property instead.

11In fact, a full proof of it is very similar to that of theorem 14
in our previous work [20].



Figure 3: The hierarchy of classes

These abstract classes for (almost) small-world
graphs are broad enough to accommodate many dif-
ferent well-known small-world models: Bollobas and
Chung’s [6], Watts and Strogatz’s [24], Kleinberg’s grid-
based [16], tree-based, and group-induced models [15].
Kleinberg describes his group-induced model with two
abstract properties, and it is not hard to see that the sec-
ond property implies our (µ,ξ)-IE for some 0 < µ, ξ < 1.
We show that our results apply to Kleinberg’s tree-based
model in the following section. It is relatively straight-
forward to extend this case for similar results in the
group-induced model. Figure 3 shows how the classes
relate.

4.4 The diameter of a tree-based random graph
We now use our framework to analyze the diameter
of Kleinberg’s tree-based model [15] and its variants.
Kleinberg shows that decentralized routing can be ap-
plied in more settings (not only the grid-based [16]),
but even when no lattice structure appears at all (say,
the network of the Web’s hyper-links). Kleinberg also
introduces a group-induced model, a generalization of
both grid-based and tree-based models [15]. He shows
that using these models, greedy routing takes expected
time O(log n) if nodes have out-degree θ(log2 n), and
O(log4 n) if the degrees are bounded by a constant.

In Kleinberg’s tree-based model nodes are the leaves
of a complete (for simplicity) b-ary tree T , where b is
a constant. Let h(u, v) denote the height of the least
common ancestor of u and v in T . There are no local

links in this setting but there are a number of directed
random links leaving each node u, under a distribution
τ , where a link is to v with probability proportional to
b−h(u,v).

If there are exactly q directed random links leaving
each node, the graphs in this tree-based setting are
very likely unconnected (similar to the case of lacking
local links in the grid-based setting [19]), however, the
setting can still be an Expansion family by adding
proper conditions. From [15], the normalizing coefficient
of this link distribution is θ(log−1 n). So, ε(τ) =
θ(n−1 log−1 n); thus, to have an Expansion family we
need this setting to meet (µ1,ξ)-EXP and (µ2,ξ)-IE for
some ξ > 1/q and µ1 + µ2 > 1. Consider the following
fact which holds even if q = 1.

Fact 4.1. For Kleinberg’s tree graphs with any q ≥ 1,
given a positive θ < 1, a node u and C ⊂ V with size at
most nθ, the probability that a random link from u hits a
node outside of C is more than 1−θ−o(1) when n is large
enough. Also, the probability that there is a random link
to u from outside of C is more than 1 − eθ+o(1)−1 (i.e.
almost 1− eθ−1) when n is large enough.

See [20] for a proof of a similar fact. It is easy to
see that the setting meets (x − o(1),1 − x)-EXP and
(y − o(1),1− ey−1)-IE for any 0 < x, y < 1. Therefore,
given q, we need to find x, y s.t.

x + y > 1; q(1− x) > 1; q(1− ey−1) > 1
Solving this system of equations, we find q ≥ 3.

Theorem 4.3. For q ≥ 3, Kleinberg’s tree-based set-
ting is an Expansion family .

We can add in local links to make the base graph
connected or make the base graph c log n-neighbored:
ring all the nodes in the base graph H or alternately,
ring all the subtrees of height at most logb(c log n). With
c determined as in theorem 4.1, this setting will have
expected diameter O(log n).

5 Random graphs induced by semi-metric or
metric functions

We have abstracted away topological features of Klein-
berg’s grid setting with our expansion criteria to create
classes where the strongest has O(log n) expected diam-
eter. We now generalize the use of a distance measure in
the distribution of random links, and this makes greedy-
like routing (defined later) work. We design classes of
random graphs using distributions based on semi-metric
functions: we define a semi-metric function d(u, v) and
generate random links between any two nodes u and v
with probability ∝ d−r(u, v). We omit proofs in this
section, which can be found in [23].



Consider a pair (G, d): a graph G = (V, E) and
a function d = dG : V 2 → R+ associated with G.
We define d to be a semi-metric function if for any
u, v ∈ V , d(u, v) = 0 ⇔ u = v; and d(u, v) = d(v, u).
We define Nk(u) = {v ∈ V |d(u, v) ≤ k}, the nodes
within ‘distance’ k of u. For c1, c2 > 0, graph G
is called (c1, c2) linear-expanded with respect to d if
∀u ∈ V, k = 1, 2 . . . : c1 ≤ |Nk(u)|

k ≤ c2 if Nk−1(u) 6= V ,
i.e. |Nk(u)| grows nearly-proportionally to k before
Nk(u) becomes V .

Definition 7. (InvDist family) An InvDist(r) is a
FRG(H, τ, q) family where each base graph H ∈ H
has an associated metric-function d and there exists
constants c1, c2 > 0 s.t. H is (c1, c2) linear-expanded
w.r.t d, and where 12: Pr[Rτ (u) = v] ∝ d−r(u, v).

All Kleinberg’s small-world models (grid-based,
tree-based and group-induced) fall into InvDist(1) for
an appropriate d. For example, for Kleinberg’s 2-D grid
model [16], we define d(u, v) as the square of the lattice
distance between u and v; for Kleinberg’s group-induced
model [15], we define d(u, v) as the size of the minimum
set containing both u and v 13.

Theorem 5.1. ∀r : 0 < r < 1, δ > 0, c2 > c1 > 0,
∃q ≥ 1 s.t. any δ-symmetric InvDist(r) family specified
by c1, c2 and q (as in definition 7) is an Expansion
family .

For any graph from a δ-symmetric InvDist(r) fam-
ily using log n-neighbored base graphs, there almost
surely exists an O(log n) length path between any two
nodes14.

5.1 Greedy-like routing.
This section constructs a new class of graphs where

most pairs of nodes have shortest paths of length
O(log n) and greedy-like paths (defined below) with
expected length O(log2 n). Inspired by Kleinberg’s idea
of greedy routing using only local information [16], we
assume that each node u knows the random links which
leave nodes in a small neighborhood near u (e.g. the
log n nodes closest to u in the base graph). Greedy-like
paths are paths found by a greedy-like algorithm which
is defined as follows: if the current node is u, choose the

12Note that any family satisfying all these criteria except having

c1 ≤ |Nk(u)|
kβ ≤ c2 instead (for some given constant β > 0) can

be normalized by using function d′(u, v) = dβ(u, v) instead, and
hence becomes an InvDist(r′) family where r′ = r/β.

13It is not hard to see that the second property (of the two
abstract properties Kleinberg uses to describe his group-induced
model) implies that |Nk(u)| grows nearly-proportionally to k.

14Note that if we only use undirected random links then the
condition of δ-symmetry is not necessary.

random link (w, v) where w is in u′s neighborhood and
v is the closest such node to the destination. Route to
w using local links and then take link (w, v). Update v
to be the current node. We now present new definitions
and then our theorems for this routing strategy.

We restrict d(u, v) to be a ‘light’ metric by adding
the condition that d(u, v) ≤ α(d(u,w)+d(w, v)) for any
nodes u, v, w and for a constant α (so less strict than the
triangle inequality). We define class MET R(r) as class
InvDist(r) but each function d is a light metric function
instead. All Kleinberg’s small-world models (grid-based,
tree-based and group-induced) are MET R(1) families
with the function d(u, v) derived naturally from each
model’s context. Except for the 1-D and the tree-based
setting, this function is not a metric. For the tree-
based setting, let d(u, v) be the number of leaves in the
smallest subtree containing u and v (this satisfies the
triangle inequality). For the group-induced model, we
let d(u, v) be the size of the smallest group containing
nodes u and v. This generally doesn’t satisfy the
triangle inequality, but satisfies ours for a proper α.

We now add neighboring conditions so our greedy-
like routing strategy can be used. An undirected base
graph H(V,E) is called k-strongly neighbored if for each
u ∈ V , the sub-graph induced by the set of nodes v such
that d(u, v) ≤ k is connected.

Theorem 5.2. For any graph from a MET R(1) family
using log n-strongly neighbored base graphs, a greedy-like
algorithm will find paths of expected length O(log2 n)
between any two nodes.

Combining theorems 5.1 and 5.2, we have:

Theorem 5.3. For any graph from a MET R(1) δ-
symmetric family using log n-strongly neighbored base
graphs, there almost surely exists a path of length
O(log n) and a greedy-like path of expected O(log2 n) be-
tween any two nodes.

This theorem easily applies to Kleinberg’s grid,
tree-based and group-induced models with proper lo-
cal links (to make the base graphs log n-strongly neigh-
bored).

5.2 Diameter of MET R(r) for 1 < r < 2.

We now present a natural generalization of our results
in §3. We consider the diameter of MET R(r), where
1 < r < 2.

Theorem 5.4. For 1 < r < 2, for a MET R(r) family,
there exists a constant ĉ s.t. if the base graphs are x0-
strongly neighbored, where x0 = ĉ log

2
2−r n (n: number

of vertices), then almost surely the expected diameter of
this family is upper bounded by a poly-log function.



For example, we can modify Kleinberg’s tree-based
setting to become a small-world graph with poly-log
expected diameter as follows. We connect all the nodes
together (say, order the nodes from left to right and
connect them with undirected edges), and for any two
nodes u and v, we add an arc from u to v with
probability proportional to b−rh(u,v) instead of b−h(u,v)

with 1 < r < 2. Note that, under the context of this
section we define d(u, v) as the number of leaves in the
smallest subtree 15 which contains both u and v: bh(u,v).

6 Concluding remarks

We consider a general construction of random graphs:
a base graph plus random links added to each node. By
gradually adding properties to the base graphs and/or
the distribution of random links, we build a hierarchy of
classes of random graphs with the finest ones featuring
small-world properties (small diameter and greedy-like
routing using local information only). Thus, we propose
a framework for analyzing and characterizing small-
world graphs.

There are still some open questions in our study of
‘adding links with probability ∝ the inverse distance’.
As noted before, the case r = 2k in the k-D grid setting
is still open. We also expect to extend our results
in §5 for base graphs with restricted growth rate16, a
general class of graphs which can be used to model many
real networks [12]. Thus our work can be useful for a
practical design problem, where we want to add in “long
links” to a given network to shrink its diameter.
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