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Outlne of Talk

• Motivating issue: overfitting is “bad,” but somehow it
often seems to work in neural networks (NNs). Why?

• Possible answer: double descent curve.

• Related R software.

• Empirical illustration.

• So, was the motivating question answered?
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Motivation

• Neural networks (NNs) as “black boxes.”

• p >> n, drastically overfit. NNs shouldn’t work well.

• Why do neural networks work well (when they do), in spite
of overfitting?
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Classical View

• Bias-variance tradeoff.

• Graph of mean loss should be U-shaped.

• As p first moves away from 0, bias decreases a lot, while
variance increases a little; curve goes downward.

• Later variance overtakes bias; curve goes upward.

• Eventually (e.g. p = n − 1 for linear model), “perfect” fit
of the training data — interpolation — but terrible at
predicting new cases.

• Setting p past the interpolation point, or even near it, is
considered overfitting.

• “Sweet spot” at bottom of the U.
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A Bizarre Discovery

• Belkin et al discovered there is often a second U!

• Comes right after the interpolation point.

• “Yay, now we know why NNs work!”

• “Long live overfitting!”

• Well, not so fast. Let’s look a little closer.
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Why a Double U?

• First, why might a double U occur? Say, for a linear
model.

• Prior to interpolation point p = n − 1, fit is unique, and
there is no bias.

• For any p ≥ n, infinitely many solutions — all biased, but
some have small variance. Thus mean risk may decrease
for a while as p continues to increase.
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Minimum-Norm Solution

• Of the infinitely-many solutions for any particular p ≥ n,
we might choose the one with smallest l2 norm. (Hope
small norm ⇒ small variance.)

• Gradient-based approches tend to produce minimum-norm
solutions. (Inferred from the form of the iterative updating
equation.)

• Since NNs use SGD, this suggests a possible reason why
NNs often work well in spite of overfitting.
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Findings of Hastie et al

Theoretical paper by Hastie, Montanari, Rosset and Tibshirani
(2019):

• Linear model, asymptotic analysis, minimum-norm.

• Depends on SNR. Second U has a minimum if SNR > 1.
Etc.

• Optimal ridge regression beats min-norm; leave-1-out CV
yields optimal.
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Related R Functions

• Do try this at home!

• MASS::ginv()
Moore-Penrose inverse, X → X+.
Min-norm solution to least-square problem.
β̂ = X+Y
Reduces to the usual (X ′X )−1Y if p < n.

• glmnet::cv.glmnet()
Finds optimal ridge (with alpha = 0).

• Optional conveniences for the polynomial illustration
below:
regtools::qePoly(), regtools::ridgePoly()
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Empirical Illustration

• Million Song dataset, UCI; 90 features (audio
measurements), 500K songs.

• Use the first p features, quadratic model; vary p.

• 10 replications, take mean over the 10.

• Predictors not interchangeable, so a better investigation
would be to randomly permute the features in each rep.

• Training set, random n rows of the dataset; vary n.

• Find Mean Absolute Prediction Error.

• Interested in:

• Does the double-U show up?
• Does ridge do better?
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Wait, what was that ridge graph again?
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Notes on the Graphs

• We do see double-descent. (Even triple?)

• As predicted, ridge beat minimum-norm —REALLY beat
it.

• Ridge exhibited a classical U shape, though the U is
surprisingly shallow. Maybe due to:

• Prediction power somewhat weak; best MAPE was 7.8,
l1 = 8.2.

• No double descent for ridge, and there shouldn’t be. (See
intuition on why double-U for min-norm.)
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n = 500
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n = 500, cont’d.

• Same pattern.

• Interpolation now at p = 32.

• Larger sample size; best MAPE now down to 7.4.
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Anything to See Here?

• So, does double-descent, min-norm explain why NNs often
well in spite of overfitting?

• Our work (Cheng et al, 2018) argues that NNs essentially
perform polynomial regression.

• But (Hastie et al) say min-norm linear models (that
includes poly regression) don’t do as well as ridge.

• Maybe this new look into the NN black box isn’t so
insightful after all.
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So Why Do NNs Get Away with
Overfitting?

• So, if min-norm and double descent don’t explain the
(sometime) success of NNs in spite of overfitting, what
does?

• Probably regularization. But where, how? My take on it:

• Min-norm is regularization, but that explanation seems not
to work. (Ridge regularization far better.)

• Dropout.
• Data runs a gauntlet of ReLUs, with many/most paths

stopped short. This in effect reduces dimension.
• Results from next-to-last layer are averaged to produce a

final value. Averaging is a form of regularization.
• Or...maybe they are not overfitting after all?



(More on) the
Notion of

Double
Descent

Norm Matloff
University of
California at

Davis

So Why Do NNs Get Away with
Overfitting?

• So, if min-norm and double descent don’t explain the
(sometime) success of NNs in spite of overfitting, what
does?

• Probably regularization. But where, how? My take on it:

• Min-norm is regularization, but that explanation seems not
to work. (Ridge regularization far better.)

• Dropout.
• Data runs a gauntlet of ReLUs, with many/most paths

stopped short. This in effect reduces dimension.
• Results from next-to-last layer are averaged to produce a

final value. Averaging is a form of regularization.
• Or...maybe they are not overfitting after all?



(More on) the
Notion of

Double
Descent

Norm Matloff
University of
California at

Davis

Are NNs Indeed Overfitting?

• From Krizhevsky et al (2012) (AlexNet paper):

• 60 million weights.

• Data augmentation factor 2048.

• Dropout factor 0.5.

• E.g. MNIST: n expanded from 65K to 130M. So 60M
weights is technically not overfitting. After dropout, 30M.

• Granted, true n is not 130M, but all this suggests that
they are not overfitting after all.



(More on) the
Notion of

Double
Descent

Norm Matloff
University of
California at

Davis

Are NNs Indeed Overfitting?

• From Krizhevsky et al (2012) (AlexNet paper):

• 60 million weights.

• Data augmentation factor 2048.

• Dropout factor 0.5.

• E.g. MNIST: n expanded from 65K to 130M. So 60M
weights is technically not overfitting. After dropout, 30M.

• Granted, true n is not 130M, but all this suggests that
they are not overfitting after all.



(More on) the
Notion of

Double
Descent

Norm Matloff
University of
California at

Davis

Access These Slides

URL for these slides:
http://heather.cs.ucdavis.edu/BARUGdouble.pdf

http://heather.cs.ucdavis.edu/BARUGdouble.pdf

