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Where I’m Coming From

Question at hand:
What is the state of the art on networks research in
your discipline?

My computer science affiliation might be misleading.

I Dissertation in pure math (statistical physics, but ancient
history, 1975).

I Early career was as a statistics professor.
I UCD CS Dept. since 1983, but much of my work is

statistical.
I I don’t really consider random networks to be CS, though

there are CS applications.

So, in this context I take “my discipline” to be statistics, not CS.

And as a statistician, many aspects of the current state of
random network models worry me.
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What Are the Goals?

Hard to choose research directions unless we know what the
goals are.

I Prediction?
I Next new alliance [works by Maoz etc.].
I Adolescents at risk of running away [Borgatti et al, 2009].

I Understanding?
I Phase change may have useful “tipping point”

interpretations.
I Effects of covariates on link formation.
I M/G/1 queue dep. on variance of service time.

Let’s look at some issues with these points in mind.
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Model Robustness Issues
Contrast classical statistical modeling, say regression analysis,
with that of random networks.

Regression:
I Good robustness for Prediction (due to minimizing

prediction some of squares).
I Fairly good robustness for Understanding. If true

regression function is monotonic with only one predictor
variable, βi will be “about right.”
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Model Robustness Issues (cont’d.)
Random graphs:
Robustness not much explored yet.

I Common situation [Aielo et al, 2002]:

I Model problems in tail raises concern about both
Prediction and Understanding.

I Seemingly small change in assumptions can greatly
change qualitative behavior [D’Souza et al, 2009].
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Model Goodness of Fit (GOF) Assessment

Again, let’s contrast regression and random network models.
Regression:

I If desire formal testing, have a natural hierarchy of models
(multivariate polynomial) for assessing GOF.

I Informal graphical assessment (residuals, nonparametric
estimation) is simple and easily interpretable.

I Cross-validation (splitting data into training, assessment
sets) is easy.
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GOF Assessment (cont’d.)

Random networks:

I Other than ERGM, formal complete tests lacking, maybe
impossible.

I N often huge, so tests are meaningless anyway.
I Graph subsets often behave differently from the full set

[Stumpf et al, 2005], so cross-validation doesn’t work.
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Other Major Issues

I Hypothesis testing, confidence intervals:
I In general, nonindependence of observations issue not

solved, difficult to attack.
I The bootstrap, “the statistician’s Swiss army knife,”

inoperable (subgraph, nonindependence problems).

I Bias issues [Achlioptas, 2005] more common here than in
classical statistics.
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(One) Statistician’s Conclusion

I Random networks could revitalize the moribund statistics
profession.

I Model fragility, GOF assessment issues are troubling.
I Potential for misunderstanding, and thus misuse, is

signficant.
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