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1 The Goal

Given an u×v matrix A with nonnegative elements, we wish to find nonnegative,
rank-k matrices W (u× k) and H (k × v) such that

A ≈WH (1)

We typically hope that a good approximation can be achieved with

k � rank(A) (2)

The benefits range from compression (W and H are much smaller than A, which
in some applications can be huge) to avoidance of “overfitting” in a prediction
context.

2 Notation

We’ll use the following notation for a matrix Q

• Qij : element in row i, column j

• Qi·: row i

• Q·j : column j

Note the key relation

(WH).j =

k∑
i=1

HijW.i (3)
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In other words, in (1), we have that:

• Column j of A is approximately a linear combination of the columns of
W , with the coefficients in that linear combination being the elements of
column j of H.

• Thus the columns W1, ...,Wk then (approximately) form a basis for the
vector space spanned by the columns of A.1 Since the relation is only
approximate, let’s use the term pseudo-basis.

• Similarly, we could view everything in terms of rows of A and H: Row i of
WH is a linear combination of the rows of H, with the coefficients being
row i of W . The rows of H would then be a pseudo-basis for the rows of
A.

• If (1) is a good approximation, then most of the information carried by
A is contained in W and H. We can think of the columns of W as
“typifying” those of A, with a similar statement holding for the rows of H
and A. Here “information” could mean the appearance of an image, the
predictive content of data to be used for machine text classification, and
so on.

3 Applications

This notion of nonnegative matrix factorization has become widely used in a
variety of applications, such as:

• Image recognition:

Say we have n image files, each of which has brightness data for r rows
and c columns of pixels. We also know the class, i.e. the subject, of each
image, say car, building, person and so on. From this data, we wish to
predict the classses of new images. Denote the class of image j in our
original data by Cj .

We form a matrix A with rc rows and n columns, where the ith column,
A·i, stores the data for the ith image, say in column-major order.

In the sense stated above, the columns of W typify images. What about
H? This is a little more complex, though probably more important:

Each image contains information about rc pixels. The mth of these, say,
varies from image to image, and thus can be thought of as a random
variable in the statistical sense. Row m in A can be thought of as a
random sample from the population distribution of that random variable.

1Or, at least for the nonnegative orthant in that space, meaning all the vectors in that
space with nonnegative components.
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So, the k rows of H typify these rc random variables, and since k is
hopefully much smaller than rc, we have received what is called dimension
reduction among those variables. It should be intuitively clear that this is
possible, because there should be a high correlation between neighboring
pixels, thus a lot of “redundant” information.

This is very important with respect to the overfitting problem in statis-
tics/machine learning. This is beyond the scope of this tutorial, but the
essence of fhe concept is that having too complex a model can lead to
“noise fitting,” and actually harm our goal of predicting the class of future
images. By having only k rows in H, we are reducing the dimensionality
of the problem from rc to k, thus reducing the chance of overfitting.

Our prediction of new images works as follows. Given the rc-element
vector q of the new image of unknown class, we find its representation
qp in the pseudo-basis for the rows of A, and then find g such Gg· best
matches qp. Our predicted class is then Cg.

• Text classification:

Here A consists of, say, word counts. We have a list of d key words, and
m documents of known classes (politics, finance, sports etc.). Aij is the
count of the number of times word i appears in document j.

Otherwise, the situation is the same as for image recognition above. We
find the NMF, and then given a new document to classify, with word
counts q, we find its coordinates qp, and then predict class by matching
to the rows of W .

• Recommender systems:

Here most of A is unknown. For instance, we have users, who have rated
movies they’ve seen, with Aij being the rating of movie j by user i. Our
goal is to fill in estimates of the unknown entries.

One approach is to initially insert 0s for those entries, then perform NMF,
producing W and H.2 We then compute WH as our estimate of A, and
now have estimates for the missing entries.

4 The R Package NMF

The R package NMF is quite extensive, with many, many options. In its
simplest form, though, it is quite easy to use. For a matrix a and desired rank
k, we simply run

> nout <− nmf( a , k )

2A popular alternative uses stochastic gradient methods to find the best fit directly, without
creating the matrix A.
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Here the returned value nout is an object of class ”NMF” defined in the
package. It uses R’s S4 class structure, with @ as the delimiter denoting class
members.

As is the case in many R packages, ”NMF” objects contain classes within
classes. The computed factors are in nout@fit@W and nout@fit@H.

Let’s illustrate it in an image context, using the following:

Here we have only one image, and we’ll use NMF to compress it, not do classi-
fication. First obtain A:

> l ibrary ( pixmap )
# read f i l e
> mtr <− read .pnm( ’MtRush . pgm ’ )
> class ( mtr )
[ 1 ] ”pixmapGrey”
attr ( , ” package ” )
[ 1 ] ”pixmap”

# mtr i s an R S4 o b j e c t o f c l a s s ”pixmapGrey”
# e x t r a c t the p i x e l s matrix
> a <− mtr@grey

Now, perform NMF, find the approximation to A, and display it:

> aout <− nmf( a , 5 0 )
> w <− aout@fit@W
> h <− aout@fit@H
> approxa <− w %∗% h
# b r i g h t n e s s v a l u e s must be in [ 0 , 1 ]
> approxa <− pmin( approxa , 1 )
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> mtrnew <− mtr
> mtrnew@grey <− approxa
> plot ( mtrnew )

Here is the result:

This is somewhat blurry. The original matrix has dimension 194 × 259, and
thus presumably has rank 194.3 We’ve approximated the matrix by one of rank
only 50, a storage savings. Not important for one small picture, but possibly
worthwhile if we have many. The approximation is not bad in that light, and
may be good enough for image recognition or other applications.

5 Algorithms

How are the NMF solutions found? What is nmf() doing internally?

Needless to say, the methods are all iterative, with one approach being that of
the Alternating Least Squares algorithm. By the way, this is not the default for
nmf(); to select it, set method = ’snmf/r’.

3This is confirmed by running the function rankMatrix() in the Matrix package.
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5.1 Objective Function

We need an objective function, a criterion to optimize, in this case a criterion for
goodness of approximation. Here we will take that to be the Frobenius norm,
which is just the Euclidean (L2) norm with the matrix treated as a vector:4

‖Q‖2 =

√∑
i,j

Q2
ij (4)

So our criterion for error of approximation will be

‖A−WH‖2 (5)

This measure is specified in nmf() by setting objective = ’euclidean’.

5.2 Alternating Least Squares

So, how does it work? It’s actually quite simple. Suppose just for a moment
that we know the exact value of W , with H unknown. Then for each j we could
minimize

‖A·j −WH·j‖2 (6)

We are seeking to find H·j that minimizes (6), with A·j and W known. But
since the Frobenius norm is just a sum of squares, that minimization is just a
least-squares problem, i.e. linear regression; we are “predicting” A·j from W .
The solution is well-known to be5

H·j = (W ′W )−1W ′A·j (7)

R’s lm() function does this for us

> h [ , j ] <− lm( a [ , j ] ˜ w − 1)

4The Lp norm of a vector v = (v1, ..., vr) is defined to be(∑
i

|vi|p
)1/p

5If you have background in regression analysis, you might notice there is no constant term,
β0, here.
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for each j.6

On the other hand, suppose we know H but not W . We could take transposes,

A′ = H ′W ′ (8)

and then just interchange the roles of W and H above. Here a call to lm()
gives us a row of W , and we do this for all rows.

Putting all this together, we first choose initial guesses, say random numbers,
for W and H; nmf() gives us various choices as to how to do this. Then we
alternate: Compute the new guess for W assuming H is correct, then choose
the new guess for H based on that new W , and so on.

During the above process, we may generate some negative values. If so, we
simply truncate to 0.

5.3 Multiplicative Update

Alternating Least Squares is appealing in several senses. At each iteration,
it is minimizing a convex function, meaning in essence that there is a unique
local and global minimum; it is easy to implement, since there are many least-
squares routines publicly available, such as lm() here; and above all, it has a
nice interpretation, predicting columns of A.

Another popular algorithm is multiplicative update, due to Lee and Seung. Here
are the update formulas for W given H and vice versa:

W ←W ◦ AH ′

WHH ′
(9)

H ← H ◦ W ′A

W ′WH
(10)

where Q ◦R and Q
R represent elementwise multiplication and division with con-

formable matrices Q and R, and the juxtaposition QR means ordinary matrix
multiplication.

6 Predicting New Cases

Once we have settled on W and H, what can we do with them? In the rec-
ommender system application mentioned earlier, we simply multiply them, and

6The -1 specifies that we do not want a constant term in the model.
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then retrieve the predicted values at the matrix positions at which we did not
have user ratings. But recall the description given above for the image and text
processing examples:

Given the rc-element vector q of the new image, we find its represen-
tation qp in the pseudo-basis, and then find g such Wg· best matches
qp. Our predicted class is then Cg.

How do we find qp? The answer is that again we can use the least-squares above.

> qp <− lm(q ˜ h − 1)

7 Convergence and Uniqueness Issues

There are no panaceas for applications considered here. Every solution has
potential problems.

With NMF, an issue may be uniqueness — there might not be a unique pair
(W,H) that minimizes (5).7 In turn, this may result in convergence problems.
The NMF documentation recommends running nmf() multiple times; it will
use a different seed for the random initial values each time.

The Alternating Least Squares method used here is considered by some to have
better convergence properties, since the solution at each iteration is unique.

8 How Do We Choose the Rank?

This is not an easy question. One approach is to first decompose our matrix A
via singular value decomposition. Roughly speaking, SVD finds an orthonormal
basis for A, but then treats the vectors in that basis as random variables. The
ones with relatively small variance may be considered unimportant.

> asvd <− svd ( a )
> asvd$d

[ 1 ] 1 .188935 e+02 2.337674 e+01 1.685734 e+01 1.353372 e+01 1.292724 e+01
[ 6 ] 1 .039371 e+01 9.517687 e+00 9.154770 e+00 8.551464 e+00 7.776239 e+00

[ 1 1 ] 6 .984436 e+00 6.505657 e+00 5.987315 e+00 5.059873 e+00 5.032140 e+00
[ 1 6 ] 4 .826665 e+00 4.576616 e+00 4.558703 e+00 4.107498 e+00 3.983899 e+00
[ 2 1 ] 3 .923439 e+00 3.606591 e+00 3.415380 e+00 3.279176 e+00 3.093363 e+00
[ 2 6 ] 3 .019918 e+00 2.892923 e+00 2.814265 e+00 2.721734 e+00 2.593321 e+00

7See Donoho and Stodden,When Does Non-Negative Matrix Factorization Give a Correct
Decomposition into Parts?, https://web.stanford.edu/~vcs/papers/NMFCDP.pdf.
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So, the first standard deviation is about 119, the next about 23 and so on. The
seventh is already down into the single-digit range. So we might take k to be,
say, 10. The columns of A lie in a subspace of R194 of dimension of about 10.

9 Why Nonnegative?

In the applications we’ve mentioned here, we always have A ≥ 0. However, that
doesn’t necesarily mean that we need W and H to be nonnegative, since we
could always truncate. Indeed, we could consider using SVD instead.

There are a couple of reasons NMF may be preferable. First, truncation may
be difficult if we have a lot of negative values. But the second reason is rather
philosophical, as follows:

In the image recognition case, there is hope that the vectors W·j will be sparse,
i.e. mostly 0s. Then we might have, say, the nonzero elements of W·1 correspond
to eyes, W·2 correspond to nose and so on with other parts of the face. We are
then “summing” to form a complete face. This may enable effective parts-based
recognition.

Sparsity (and uniqueness) might be achieved by using regularization methods,
in which we minimize something like

‖A−WH‖+ λ(‖W‖1 + ‖H‖1) (11)

where the subscript 1 (“L1 norm”) means the norm involves sums of absolute
values rather than sums of squares. This guards against one of the factors
becoming “too large,” and it turns out that this also can lead to sparse solutions.
We can try this under nmf() by setting method = ’pe-nmf’.
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