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1 Introduction: What is OpenAcc?

OpenAcc stands for Open Accelerators. Developed by CAPS, Cray, Nvidia,
and PGI. OpenAcc is used to simplify parallel programming and can translate
into a wide range of accelerators such as APUs and GPUs. OpenAcc allows
users to write high-level parallel programming with C++ or Fortran code.

2 Terminology

Similar to OpenMP, the OpenACC directive general syntax is as follows:
#pragma acc <d i r e c t i v e> [ c l au s e [ [ , ] c l au s e ] . . . ]

Also like OpenMP, the directive will apply to the block of code that follows
the given directive. This includes loops or structured blocks of code, where
applicable. Directives are case sensitive. OpenACC supports C, C++, and
Fortran, however, our tutorial focuses on C.

OpenACC is designed to move code that is parallelizable from the host CPU
to an accelerator device (GPU) for execution. Due to the fact that OpenACC
works with many different types of accelerator devices, there are Internal
Control Variables (ICVs) used to determine the type of accelerator device
and which accelerator device you wish to use. The environment variables
used for the device type and device number are ACC DEVICE TYPE and
ACC DEVICE NUM respectively. These environment variables can be al-
tered via a call to acc set device type and acc set device num from within
your code and retrieved via a call to acc get device type and acc get device num.
If you do not set the ICVs, the default values are implementation dependent.
The types of supported accelerator devices and the number of devices you
can use during a single compilation are also implementation dependent.

When declaring an OpenACC directive, the directive can be applied to cer-
tain accelerators or all accelerators via the device type clause. The argu-
ments to the device type clause are either a comma separated list of acceler-
ator architecture identifiers or an asterisk for all accelerators that were not
previously mentioned in another device type clause. When compiling, the
compiler will use the most specific clauses that apply to the architecture you
are using, with the asterisk being the least specific. The general syntax for
the device type clause is:
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dev i c e type (∗ )
dev i c e type (<comma−separated dev i ce type l i s t >)

One of the most widely used OpenACC directives is the parallel loop con-
struct. Its syntax is:

#pragma acc p a r a l l e l loop [ c l au s e [ [ , ] c l au s e ] . . ]
{ for−loop}

This directive works in a similar way to OpenMPs #pragma omp parallel for
construct. When using the #pragma acc parallel loop directive, the compiler
will attempt to run the code in the for loop in parallel even if it is not safe
to do so. For instance, in the situation when a later iterations calculation
depends on a previous iterations calculation. Due to this fact, this directive
should be used with caution and only when you completely understand the
underlying algorithm. If you do not use the async clause, there is an implicit
barrier at the end of the parallel loop region. Some of the clauses that can
be used in the parallel loop construct are as follows:

async [ ( int−expr ) ]
r educt ion ( operator : var− l i s t )
copyin ( var− l i s t )
copyout ( var− l i s t )
c o l l a p s e ( n )
seq

The async (asynchronous) clause is used to remove the implicit barrier at the
end of the code region. The reduction clause works in a similar way to Open-
MPs reduction clause. Reduction takes an operator and a list of variables as
arguments. Reduction will apply the operator provided individually to the
list of variables given. At the end of the code region in which the reduction
applies, it will combine the result of applying the operator and store said
result in the variable provided in the variable list. The operators that can be
used with reduction in C are +, ∗, max, min, &, |, %, &&, and ||. Copyin
and copyout directives are used to manage device memory. Upon entering a
code region with the copyin directive, if the variables listed are not already
on the device, memory will be allocated and the data that pertains to the
variable will be copied in. Copyout works in a similar manner, except its
work is done upon exiting the code region. Upon exiting the code region in
which the copyout clause was used, the data will be copied back to the local
host and the memory on the device will be deallocated. The collapse clause
also works like OpenMPs collapse. It basically tells the compiler how many
loops should be associated with the preceding loop directive. Finally, the seq
clause tells the compiler that the loops should be executed in a sequential
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manner.

Another commonly used OpenACC directive used is the kernel construct. Its
syntax is as follows:

#pragma acc k e rn e l s [ c lause− l i s t ]
{ s t ructured−block}

The OpenACC kernel construct will attempt to make the code within the
block parallel by creating accelerator kernels where possible and safe to do
so. This is a safe way to make your code parallel because the compiler will
only make the code that is safe to make parallel, parallel. However, the
generated code may not always be, and usually isnt, the most efficient code
possible. The kernels generated will run on the GPU. If you do not use the
async clause, there is an implicit barrier at the end of the kernels region.
Some of the clauses allowed in the kernels construct are as follows and are
explained above in the parallel loop section:

async [ ( int−expr ) ]
copyin ( var− l i s t )
copyout ( var− l i s t )

A third frequently used OpenACC directive is the data construct. It has the
following syntax:

#pragma acc data [ c lause− l i s t ]
{ s t ructured−block } .

This construct is used to give the compiler hints as to how to handle de-
vice memory. By using this directive, you tell the compiler that the device
memory should remain on the device while in the region/structured-block
following the directive. You can also tell the compiler if/what data should
be copied into the device upon entering the region and if/what data should
be copied from the device to the host upon exiting the region. Some of the
clauses that can be used with this directive follow and their explanations are
above in the parallel loop section:

copyin ( var− l i s t )
copyout ( var− l i s t )

Another regularly used OpenACC directive is the routine directive. It’s syn-
tax is:

#pragma acc rout ine [ c lause− l i s t ]

This directive is similar to using device when declaring a device function
in Cuda. It basically tells the compiler to create a version of the function for
both the host and the device.
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3 OpenAcc and CUDA

The first example we will introduce is a simple matrix computation. We will
find the quadratic form u’Au. We have an n x n symmetric matrix, A, and a
n x 1 column vector, u. We will compute u’Au, by multiplying matrices of the
following sizes: (1 x n)(n x n)(n x 1) = (1 x 1). This results in a 1 x 1 matrix,
which we will treat as a scalar. Thus, we can write a C function to compute
u’Au. The signature of this function will be as follows: float gpuquad(float
*a, int n, float *u), where ’a’ and ’u’ are float arrays, and the return value
of the function is u’Au treated as a scalar. In this introductory example, we
will take a naive approach in order to illustrate the functionality of OpenAcc
as compared to CUDA. First we will multiply A and u, then multiply u’ by
this result in order to produce the final result.

The OpenAcc code for the function is included below:

#include <s t d l i b . h>

// Finds u ’Au
f loat gpuquad ( f loat ∗a , int n , f loat ∗u)
{

// Finds Au
f loat ∗au = ( f loat ∗) mal loc (n ∗ s izeof ( f loat ) ) ;
#pragma acc data copyin (a , u)
#pragma acc k e rn e l s
for ( int i = 0 ; i < n ; i++)
{

for ( int j = 0 ; j < n ; j++)
{

au [ i ] += a [ ( i ∗ n) + j ] ∗ u [ j ] ;
}

}

// Finds ( u ’ ) (Au) = u ’Au
f loat r e s u l t = 0 ;
#pragma acc k e rn e l s
for ( int i = 0 ; i < n ; i++)
{

r e s u l t += u [ i ] ∗ au [ i ] ;
}

#pragma acc end data copyout ( r e s u l t )

return r e s u l t ;
}

This simple example uses the ’data’ and ’kernels’ pragmas in order to inter-
face with the accelerator. Notice that this example uses only three OpenAcc
pragmas in order to parallelize the code, but would work correctly if the
pragmas were omitted. The line

#pragma acc data copyin (a , u)

tells the compiler to copy ’a’ and ’u’ to the GPU and keep the data there
until the line
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#pragma acc end data copyout ( r e s u l t )

where the result is copied back to the host. Inside this data section, we use
the line

#pragma acc k e rn e l s

in order to ask to compiler to run kernels on the device where possible.

This is in contrast to a CUDA version of the same function, which is included
in the appendix. In the CUDA version we used declarations prepended with
” global ” in order to specify kernel functions. In the OpenAcc version, we
used the ”kernels” pragma in order to ask the compiler to do this work for
us. In the CUDA version, we use cudaMalloc and cudaMemcpy in order to
copy to/from the device and host. With OpenAcc ”copyin” and ”copyout”
are used in order to achieve similar functionality.

The graph above shows the performance of the quadratic form computation
using the serial, CUDA, and OpenAcc versions of the code with n of 10,000.
The OpenAcc version is about twice as fast as the CUDA version.

4 OpenAcc and OpenMP

The next example computes the number of brights spots in a matrix that
represents pixel brightness in an image.

The function brights takes in an array of floats and finds the maximal number
of b̈right spots̈, where a bright spot is a square subset of that array in which
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all the values in that subset are greater than some threshold value.

The algorithm is simple and naive without any optimizations: it scans through
the array pixel by pixel from right to left accross rows and whenever it finds
a single value greater than the threshold it spawns a function which checks
to see if that signle value is the upper-right corner of a bright spot.

The parallel implementation of this algorithm is quite naive in that it simply
distributes the workload by rows: one thread wis responsible for some number
of rows.

There are two implementations in the appendix, one written with OpenAcc
and one written with OpenMP; only the interesting portions are shown here.

1) The serial implementation′s main loop:

74 int b r i g h t s s e r i a l ( f loat ∗ pix , int n , int k , f loat thresh ) {
75 int masterCount = 0 ;
76
77 for ( int i =1; i<=n ; i++) {
78 for ( int j =1; j<=n ; j++) {
79 masterCount += i sB r i g h t S p o t s e r i a l ( pix , n , k , thresh , i , j ) ;
80 }
81 }
82 return masterCount ;
83 }

Notice the function isBrightSpot() (shown in the appendix in detail). It
simply spawns a second set of double for loops that checks the square of size
k*k for any non-bright spots. When it finds one, it returns 0. if it does not, it
returns 1. This loop will check every single pixel, multiple times (depending
on how many bright pixels there are).

2) The OpenMP implementation improves on this algrotihm by allowing
different CPU threads (usually 2 per core on modern intel machines that
support hyperthreading) to partition the array by rows:

78 int brights omp ( f loat ∗ pix , int n , int k , f loat thresh ) {
79 int masterCount = 0 ;
80
81 /∗∗∗∗ DIVERGE: be g in omp p a r a l l e l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
82 #pragma omp p a r a l l e l
83 {
84 #pragma omp for c o l l a p s e (2 ) reduct ion (+:masterCount )
85 for ( int i =1; i<=n ; i++) {
86 for ( int j =1; j<=n ; j++) {
87 masterCount += isBrightSpot omp ( pix , n , k , thresh , i , j ) ;
88 }
89 }
90 }
91 return masterCount ;
92 }

Here, there are two major additions. Firstly, line 82 calls the pragma omp
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parallel indicating that the following block of code is to be executed in par-
allel by some number of cores. Line 84 then goes on to create a for loop
of depth 2, which has a reduction clause. the reduction clause creates a
copy of the variables listed as it’s arguments (masterCount in this case) for
each partitioned instance of the for loop. Upon the completion of the loop,
the individual instances are merged by the operand listed just before each
variable (summation, +, in this case). By structuring the for loop in this
manner we avoid having to deal with critical sections required to ensure that
the different threads don’t overlap when adding their respective bright spot
counts back to the main total.

3) The OpenACC version of this same code provides a very OpenMP like
interface for accomplishing the same goal, while allowing the flexibility to be
run on a wide variety of hardware:

91 int b r i gh t s a c c ( f loat ∗ pix , int n , int k , f loat thresh ) {
92 int masterCount = 0 ;
93
94 /∗∗∗∗ DIVERGE: be g in p a r a l l e l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
95 int s f = s izeof ( f loat ) ;
96 #pragma acc p a r a l l e l loop c o l l a p s e (2 ) reduct ion (+:masterCount ) copyin ( pix [ 0 : n∗n ] )
97 for ( int i =1; i<=n ; i++) {
98 for ( int j =1; j<=n ; j++) {
99 masterCount += i sBr i gh tSpo t ac c ( pix , n , k , thresh , i , j ) ;

100 }
101 }
102 return masterCount ;
103 }

When line 84 from the brights omp example is compared to line 91 from
the brights acc example, there are a couple differences to be noted. Firstly,
instead of the for directive in OpenMP, we have the loop directive, however
the two function nearly identically. Second, notice the last directive in the
list, copyin(). Copyin() can be thought of in a similar manner to the CUDA
subroutine cudaMemcpy(). Copyin() functionally exports the data conatined
within whatever data structure is passed to it (along with the size of the
structure) over to the device memory of the device that is being used for the
actual parallel computation. Because OpenACC can be used for either GPUs
or Multicore CPUs, the compiler of choice will ultimately make the decision
as to where this memory will be allocated and how it will be addressed; as a
programmer, we only need to deal with the abstractions of that memory, not
the memory itself. The last two unmentioned clauses, collapse and reduction,
function identically to the OpenMP counterparts.

Because OpenACC is funcdamentally an abstraction of parallel code rather
than device or machine specific parallel code itself, there is one other impor-
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tant directive that needs to be invoked for the above code to run: the routine
directive:

70 #pragma acc rout ine seq
71 int i sBr i gh tSpo t ac c ( f loat ∗ pix , int n , int k , f loat thresh ,
72 int i , int j ) ;

Routine can be thought of as the device marking for functions in CUDA.
Routine tells the compiler that the function immediately following it (or the
function name passed to it as an argument: routine(isBrightSpot acc) seq)
needs to be available on the device as well as the host. The seq clause after the
directive tells the compiler that this function must be implemented sequenc-
tially. Other possible clauses include vector, gang, and worker which indicate
the type of parallelism which the given function contains, i.e. whether paral-
lelism can be implemented with respect to a thread’s gang, a thread’s worker,
or a thread’s vector. The routine directive can also be seen on line 78 in the
brights acc code.

The graph above shows the performance of the bright spots computation
using the serial, OpenMP, and OpenAcc versions of the code with 1,000 by
1,000 matrices. The OpenAcc version is slightly faster than the OpenMP
version.

8



5 Appendix

OpenAcc and CUDA
1.1 Quadratic Form in OpenAcc

#include <s t d l i b . h>

// Finds u ’Au
f loat gpuquad ( f loat ∗a , int n , f loat ∗u)
{

// Finds Au
f loat ∗au = ( f loat ∗) mal loc (n ∗ s izeof ( f loat ) ) ;
#pragma acc data copyin (a , u )
#pragma acc k e rn e l s
for ( int i = 0 ; i < n ; i++)
{

for ( int j = 0 ; j < n ; j++)
{

au [ i ] += a [ ( i ∗ n) + j ] ∗ u [ j ] ;
}

}

// Finds (u ’ ) (Au) = u ’Au
f loat r e s u l t = 0 ;
#pragma acc k e rn e l s
for ( int i = 0 ; i < n ; i++)
{

r e s u l t += u [ i ] ∗ au [ i ] ;
}

#pragma acc end data copyout ( r e s u l t )

return r e s u l t ;
}

1.2 Quadratic Form in CUDA

#include <cuda . h>

// Finds au .
g l o b a l void findAu ( f loat ∗a , int n , f loat ∗u , f loat ∗au )

{
int me = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int numTotalThreads = blockDim . x ∗ gridDim . x ;

f loat r e s u l t ;
for ( int rowNum = me ; rowNum < n ; rowNum += numTotalThreads )
{

r e s u l t = 0 ;
for ( int i = 0 ; i < n ; i++)
{

r e s u l t += ( a [ ( rowNum ∗ n) + i ] ∗ u [ i ] ) ;
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}
au [ rowNum] = r e s u l t ;

}
}

// Replaces au [ i ] wi th au [ i ] ∗ u [ i ] .
g l o b a l void f indAu2 ( int n , f loat ∗u , f loat ∗au )

{
int me = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int numTotalThreads = blockDim . x ∗ gridDim . x ;

for ( int rowNum = me ; rowNum < n ; rowNum += numTotalThreads )
{

au [ rowNum] = u [ rowNum] ∗ au [ rowNum ] ;
}

}

f loat gpuquad ( f loat ∗a , int n , f loat ∗u)
{

const int threadsPerBlock = 128 ;
const int numBlocks = 192 ;

// Device a .
f loat ∗da ;
cudaMalloc ( ( void∗∗)&da , n ∗ n ∗ s izeof ( f loat ) ) ;
cudaMemcpy(da , a , n ∗ n ∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;

// Device u .
f loat ∗du ;
cudaMalloc ( ( void∗∗)&du , n ∗ s izeof ( f loat ) ) ;
cudaMemcpy(du , u , n ∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;

// Device in termed ia te au .
f loat ∗dau ;
cudaMalloc ( ( void∗∗)&dau , n ∗ s izeof ( f loat ) ) ;

dim3 dimGrid ( threadsPerBlock , 1 ) ;
dim3 dimBlock ( numBlocks , 1 , 1 ) ;

findAu<<<dimGrid , dimBlock>>>(da , n , du , dau ) ;
findAu2<<<dimGrid , dimBlock>>>(n , du , dau ) ;

// Copy the dev i ce au back to the hos t .
f loat ∗ au = ( f loat ∗) mal loc (n ∗ s izeof ( f loat ) ) ;
cudaMemcpy(au , dau , n ∗ s izeof ( f loat ) , cudaMemcpyDeviceToHost ) ;

// Ca l cua l t e the f i n a l r e s u l t on the hos t .
f loat r e s u l t = 0 ;
for ( int i = 0 ; i < n ; i++)
{

r e s u l t = r e s u l t + au [ i ] ;
}

cudaFree ( da ) ;
cudaFree (du ) ;
cudaFree ( dau ) ;
f r e e ( au ) ;
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return r e s u l t ;
}

OpenAcc and OpenMP
2.1 Bright Spots in OpenAcc

#include <openacc . h>

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Function Prototypes
∗ #############################################################################∗/

/∗∗ b r i g h t s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// g iven some nxn p i x e l array , count how many ’ b r i g h t ’ kxk submatr i c i e s there
// are where ’ b r i g h t ’ means every p i x e l w i th in the submatrix i s g r ea t e r than
// some va lue th re sh . re turn count
int b r i g h t s a c c ( f loat ∗ pix , int n , int k , f loat thresh ) ;

/∗∗ i sBr i gh tSpo t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// g iven a s i n g l e po in t ( i , j ) w i th in the matrix pix , check to see i f t ha t po in t
// i s the upper− l e f t corner o f a kxk submatrix where a l l va lue s are g r ea t e r than
// thre sh .
// s tops when f i r s t va lue l e s s than thre sh i s found , and saves the coord ina te s
// o f the o f f end ing va lue ( r , c ) as badPixelR & badPixelC ( fo r op t imi za t i on )
#pragma acc rou t in e seq
int i sB r i gh tSpo t a c c ( f loat ∗ pix , int n , int k , f loat thresh ,

int i , int j ) ;

/∗∗ index ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// g iven some matrix mat as f l o a t array and indexes I & j , index i n t e p r e t s mat
// as a column−major matrix with r rows and c columns . i t r e turns a po in t e r
// to the va lue s to red in the matrix po s i t i on i , j
#pragma acc rou t in e seq
f loat ∗ i ndex acc ( f loat ∗ mat , unsigned r , unsigned c , unsigned i , unsigned j ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Function De f i n i t i on s
∗ #############################################################################∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int b r i g h t s a c c ( f loat ∗ pix , int n , int k , f loat thresh ) {

int masterCount = 0 ;

/∗∗∗∗ DIVERGE: beg in p a r a l l e l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int s f = s izeof ( f loat ) ;
#pragma acc p a r a l l e l loop c o l l a p s e (2 ) r educt i on (+:masterCount ) copyin ( pix [ 0 : n∗n ] )
for ( int i =1; i<=n ; i++) {

for ( int j =1; j<=n ; j++) {
masterCount += i sBr i gh tSpo t a c c ( pix , n , k , thresh , i , j ) ;

}
}
return masterCount ;

}
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/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int i sB r i gh tSpo t a c c ( f loat ∗ pix , int n , int k , f loat thresh ,

int i , int j ) {

/∗ Case : b r i g h t spot would extend beyond array bounds ∗/
i f ( ( ( i+k−1)>n ) | | ( ( j+k−1)>n ) ) return 0 ;

/∗ Assuming Bright spot i s po s s i b l e , check every po in t in p o t e n t i a l b r i g h t spot
∗ f o r va lue s under t h r e s ho l d . i f found , stop , save bad p i x e l s , & return 0

∗/
for (unsigned r=i ; r<( i+k ) ; r++) {

for (unsigned c=j ; c<( j+k ) ; c++) {
i f ( (∗ i ndex acc ( pix , n , n , r , c ) ) < thresh ) {

return 0 ;
}

}
}
return 1 ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
f loat ∗ i ndex acc ( f loat ∗ mat , unsigned r , unsigned c , unsigned i , unsigned j ) {

unsigned pos = ( j−1) + ( ( i −1)∗ c ) ;
i f ( pos >= r ∗ c ) return ’ \0 ’ ;
else return &mat [ pos ] ;

}

2.2 Bright Spots in OpenMP

#include <omp . h>

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Function Prototypes
∗ #############################################################################∗/

/∗∗ b r i g h t s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// g iven some nxn p i x e l array , count how many ’ b r i g h t ’ kxk submatr i c i e s there
// are where ’ b r i g h t ’ means every p i x e l w i th in the submatrix i s g r ea t e r than
// some va lue th re sh . re turn count
int brights omp ( f loat ∗ pix , int n , int k , f loat thresh ) ;

/∗∗ i sBr i gh tSpo t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// g iven a s i n g l e po in t ( i , j ) w i th in the matrix pix , check to see i f t ha t po in t
// i s the upper− l e f t corner o f a kxk submatrix where a l l va lue s are g r ea t e r than
// thre sh .
// s tops when f i r s t va lue l e s s than thre sh i s found , and saves the coord ina te s
// o f the o f f end ing va lue ( r , c ) as badPixelR & badPixelC ( fo r op t imi za t i on )
int i sBrightSpot omp ( f loat ∗ pix , int n , int k , f loat thresh ,

int i , int j ) ;

/∗∗ index ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// g iven some matrix mat as f l o a t array and indexes I & j , index i n t e p r e t s mat
// as a column−major matrix with r rows and c columns . i t r e turns a po in t e r
// to the va lue s to red in the matrix po s i t i on i , j
f loat ∗ index omp ( f loat ∗ mat , unsigned r , unsigned c , unsigned i , unsigned j ) ;
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/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Function De f i n i t i on s
∗ #############################################################################∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int brights omp ( f loat ∗ pix , int n , int k , f loat thresh ) {

int masterCount = 0 ;

/∗∗∗∗ DIVERGE: beg in omp p a r a l l e l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#pragma omp p a r a l l e l
{

#pragma omp for c o l l a p s e (2 ) r educt i on (+:masterCount )
for ( int i =1; i<=n ; i++) {

for ( int j =1; j<=n ; j++) {
masterCount += isBrightSpot omp ( pix , n , k , thresh , i , j ) ;

}
}

}
return masterCount ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int i sBrightSpot omp ( f loat ∗ pix , int n , int k , f loat thresh ,

int i , int j ) {

/∗ Case : b r i g h t spot would extend beyond array bounds ∗/
i f ( ( ( i+k−1)>n ) | | ( ( j+k−1)>n ) ) return 0 ;

/∗ Assuming Bright spot i s po s s i b l e , check every po in t in p o t e n t i a l b r i g h t spot
∗ f o r va lue s under t h r e s ho l d . i f found , stop , save bad p i x e l s , & return 0

∗/
for (unsigned r=i ; r<( i+k ) ; r++) {

for (unsigned c=j ; c<( j+k ) ; c++) {
i f ( (∗ index omp ( pix , n , n , r , c ) ) < thresh ) {

return 0 ;
}

}
}
return 1 ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
f loat ∗ index omp ( f loat ∗ mat , unsigned r , unsigned c , unsigned i , unsigned j ) {

unsigned pos = ( j−1) + ( ( i −1)∗ c ) ;
i f ( pos >= r ∗ c ) return ’ \0 ’ ;
else return &mat [ pos ] ;

}
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