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Abstract
Association rule discovery in large data sets is vulnerable
to producing excessive false positives, due to the multiple
inference effect. This paper first sets this issue in precise
mathematical terms and presents some analytical results.
These show that a common concern regarding effects of fil-
tering is not as problematic as had been previously thought.
The analytical results also shed new light on a recently pro-
posed method for dealing with the problem. The paper then
proposes a new method based on simultaneous confidence
intervals, computed via a novel use of the statistical boot-
strap tool. The proposal here differs markedly from previous
bootstrap/resampling approaches, not only in function but
also in basic goal, which is to enable much more active par-
ticipation by domain experts.

1 Introduction

There is a rich literature on methods for association rule
discovery [4], one of the major issues being control of the
number of false positives, i.e. discovered “rules” which
are only statistical artifacts. As seen in the long list
of citations in [12], many solutions have been proposed,
but a fully satisfactory approach has yet to be devised.
The present paper will present a different approach that
has certain desirable features that should make it a
valuable tool in the field. The issue is related to the
statistical overfitting problem, which itself has a very
rich literature, for instance [10] [7].

In Section 2, the problems will be given a precise
formulation, with a deeper look at the process. It will
be shown that though previous work has raised concerns
regarding the two-stage nature of standard rule-finding
approaches, for typical data mining applications there
is actually very little to worry about. This will have
a direct positive consequence for the bootstrap method
proposed here, as it will reduce computational needs.
Theoretical results will also be presented, showing that
Bonferonni-based approaches may have insurmountable
problems, thus motivating the alternative methodology
proposed here.

The focus of the present work is on controlling the
number of false positives through resampling opera-
tions. There has been much previous work that takes a
resampling approach [6] [14] but Section 3 will present a
new method, based on a novel type of bootstrap-based
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confidence intervals. This new methodology is aimed at
maximizing the active involvement of domain experts in
the rule discovery process. Numerical investigations of
the proposed method will be presented.

In order to more clearly illustrate the issues, the
present paper will focus on the market basket setting.
However, the analysis and methods will be seen to easily
generalize to non-binary attributes.

2 A Closer Look at the Rule Finding Problem

In order to prepare for presenting the new proposed
methodology, this section will describe the rule-finding
problem in precise mathematical terms, and will present
some theoretical results that shed light on the issues.

2.1 Problem Statement Let r denote the number
of attributes. As noted, in this market basket setting,
the jth attribute is 1-0 valued, indicating the presence
or absence, respectively, of a purchase of the jth item.
Suppose we have data on n transactions, and let Xij de-
note the value of the jth attribute in the ith transaction.
Finally, define Ti = (Xi1, ..., Xir) to be the ith transac-
tion as a whole, i = 1,...,n. Statistical approaches to
the rule finding problem model the n transactions as a
sample from some population [8].

A number of measures have been proposed for
the effectiveness of a rule [2]. For simplicity, this
paper will focus on the “classical” measures, support
and confidence. Again, the results here will be easily
extendable to other measures.

Let S = (s1, ..., sr) denote an itemset, i.e. a col-
lection of distinct numbers from {1,...,r}. For instance,
S = (2, 5, 6) would represent items 2, 5 and 6. For any
transaction T, write S ⊂ T to indicate that T contains
the items in S, and possibly others. Let freq(S) denote
the number of Ti, i=1,...,n such that S ⊂ Ti.

Consider disjoint itemsets U and V, and a potential
rule U ⇒ V . Let U ∩ V denote the situation in which
a transaction contains all items of both U and V. (The
sets being intersected are sets of transactions, not sets
of items.) The support and confidence of the rule
are defined to be supp(U ∩ V ) = freq(U ∩ V )/n and
conf(V |U) = supp(U ∩ V )/supp(U).



2.2 The Multiple Inference Problem This then
brings us to the heart of the multiple inference problem.
The random quantities supp(U) and conf(V|U) are then
estimators of P(U) and P(V|U), the population propor-
tions of transactions satisfying the specified situations.
As such, the estimators are subject to statistical sam-
pling error. Thus a rule that looks strong, i.e. with a
high value of conf(V|U), may actually be a sampling ar-
tifact with the true value of P(V|U) being considerably
smaller. Worse, the more possible rules we consider, the
more chance there is that at least one of the estimates
will be much larger than the true population value.

Rule discovery procedures typically use the clas-
sical statistical hypothesis testing approach (includ-
ing the equivalent use of p-values). The tests typi-
cally have null hypotheses such as H0 : P (U) = 0,
H0 : P (U) ≤ minsupp, H0: U and V are independent,
H0 : P (V |U) ≤ minconf , and so on. Here minsupp
and minconf are desired minimum levels of support and
confidence.

A statistical significance level will be chosen, say
the classical 0.05, and a rule will be used if the test
statistic exceeds the corresponding threshhold. Again,
even though the Type I error probability for each test
is 0.05, that probability for all the tests collectively—
the experimentwise or familywise error rate—is much
higher than 0.05. This multiple inference problem, also
called the simultaneous inference problem, has been
extensively covered in the statistical literature [5].

2.3 Another Type of Multiple Inference Prob-
lem A related concern has been a possible compromise
of a nominal Type I error level due to filtering [14] [12]
[13]. Suppose one follows the typical two-stage process:
In the first stage, we find a set of candidate rules with es-
timated support exceeding minsupp, and then in the sec-
ond stage we searche among that candidate set for rules
with high confidence values. To be statistically sound,
any inference in the second stage must be based on the
conditional distribution of the estimated confidence val-
ues, given the result of the first stage—a random event,
with different samples possibly producing different can-
didate sets. Yet typical practice assumes the uncondi-
tional distribution, so that the nominal value set for α,
the probability of a Type I error, is technically incorrect.

One could solve this problem by simultaneously fil-
tering on both support and confidence. However, this
greatly increases the number of tests to be performed,
and thus seriously exacerbates the problem of loss of
power due associated with multiple inference proce-
dures. This would also create a huge computational
problem for the bootstrap method presented later in this
paper. However, fortunately the issue of conditional in-

ference is not a serious one for large samples. This can
be seen analytically:

Lemma 2.1. Consider a vector-valued sequence of ran-
dom variables {Wn}, and let f() be a scalar-valued func-
tion of the Wn such that

lim
n→∞

P [f(Wn) ≤ t](2.1)

exists. Consider a sequence of events {Qn} such that
limn→∞ P (Qn) = 1. Then

lim
n→∞

P [f(Wn) ≤ t|Qn] = lim
n→∞

P [f(Wn) ≤ t](2.2)

Proof. Define Rn to be 1 or 0, according to whether
f(Wn) ≤ t, and define Sn similarly for the occurrence
of Qn. Then

|P [f(Wn) ≤ t]− P [f(Wn) ≤ t and Qn)|(2.3)
= |E(Rn)− E(RnSn)|
= |E(Rn(1− Sn)|
≤ |E(1− Sn)|
= 1− P (Qn)
→ 0 as n →∞

The result then follows from the relation
P [f(Wn) ≤ t|Qn) = P [f(Wn) ≤ t and Qn]/P (Qn)

Here the function f would be the one that computes
a hypothesis test statistic, and the events Qn would
represent the random candidate set chosen during the
support-oriented stage of the rule discovering process.
Then P [f(Wn) ≤ t|Qn] is 1.0 minus our probability of
a Type I error if the null hypothesis is true. We hope
this to be α (asymptotically). The result says that for
large samples, which we typically have in data mining
contexts, we can safely compute our inferences on con-
fidence values as if the distributions are unconditional.
We thus need not worry that the true value of α is dif-
ferent than the value at which we set it.

2.4 Bonferroni-Based Approaches The simplest
approach to the multiple inference problem is to use the
Bonferroni Inequality. If one does b tests and desires an
experimentwise error rate of at most α, one can achieve
this by performing each test with a Type I error level of
α/b. In order to motivate this paper’s proposal of “yet
another” solution to the multiple inference problem, it
is important to first discuss the fundamental problems
arising from Bonferroni-based approaches.

In data mining contexts, b can be quite large, often
in the tens of thousands or more. This can severely



compromise statistical power, i.e. the ability to reject
a hypothesis which is false. For instance, the “Z cutoff
value” for a one-sided 0.05 level test based on a normal
distribution with b = 1 is 1.65, but for b = 100 it is
already doubled, to 3.29. This makes rejection of a
hypothesis much more difficult, and thus has reduced
power to discover true rules. In other words, though we
are controlling the probability of discovering false rules,
we are limiting our ability to discover true ones.

This can be a very subtle phenomenon. For exam-
ple, consider the holdout procedure proposed by Webb
[12] [13]. The approach is quite ingenious, typically
achieving a major reduction in b, via holdout: The sam-
ple is split into two subsamples. Tests are performed in
the first subsample without regard to multiple inference
issues at all, i.e. each test is perfomed at the full value of
α. Suppose k rules are found in that stage. These rules
are then subjected to verification on the second sub-
sample, using multiple inference methodology, say some
form of Bonferroni with b = k. Since k will typically be
much smaller than the number of potential rules, this
achieves a much smaller value of b than would have been
the case for straightforward application of Bonferroni,
referred to as the direct method in [12] [13].

The empirical findings in those papers were mixed.
Although the holdout method discovered more rules
when applied to a real data set, one of course cannot
tell whether the rules were true ones. In the simulation
experiments, the results for the holdout and direct
methods were generally within sampling error of each
other, though the holdout method seemed to bring an
improvement of as much as 20% in some settings.

Unfortunately, due to the huge computational work
involved in these simulations, the empirical studies
in [12] [13] were limited. In the two experiments
performed, the space of potential rules consisted of only
40 rules in the first experiment and 83 rules in the
second. It is thus desirable to perform some theoretical
analysis, so as to investigate the behavior of the holdout
and direct approaches for much larger rule spaces.

To this end, let consider the following abstraction
of the problem. Say we have m samples of size h,
with the ith being from a N(µi, 1) distribution. Let Gi

denote the ith sample mean, and suppose we are testing
H0 : µi = 0, i = 1,...m. This can be thought of, say,
as an abstraction of the problem of testing for nonzero
support for m different itemsets.

Suppose that unknown to us, the true value of µi is
d for i = 1,...,k and that µi is 0 for i = k+1,...,m. Let’s
take α = 0.05. Our test statistic for µi is

Zi =
Gi

1/h0.5
(2.4)

Under a standard Bonferroni approach to rule finding,
we reject H0 if Zi > gm = Φ−1(1− 0.05/m), where Φ is
the cdf for N(0,1). For instance, as noted, for m = 100
we have gm = 3.29.

For i = 1,...,k, the power of the test is

P (Zi > gm) = 1− Φ
(
gm − dh0.5

)
(2.5)

So, the expected number of correct rule discoveries is

k
[
1− Φ

(
gm − dh0.5

)]
(2.6)

What would happen with the Webb method? Say
we apportion our two subsamples to h/2 observations
each. For i = 1,...,k, we can obtain the power by
applying (2.5) and replacing m by 1 and h by h/2. So
the expected number of correct rules found in the first
subsample will be

ν1 = k
[
1− Φ

(
g1 − d(0.5h)0.5

)]
(2.7)

For i = k+1,...,m the power is 0.05. Thus the
expected number of false discoveries found in the first
subsample will be

ν2 = (m− k)0.05(2.8)

As a rough approximation, let’s then assume that
the number of rules that reach the second stage is the
constant ν = ν1 + ν2, again breaking down into ν1 true
rules and ν2 false ones.

Then in the second stage the analyst will apply the
Bonferroni method with b = ν. The power for the
true and false cases is computed as above, so that the
expected number of true discoveries will be

ν1

[
1− Φ

(
gν − d(0.5h)0.5

)]
(2.9)

We evaluated (2.9) for various parameter values
(not presented here, producing very mixed results. For
instance, for m = 1000000, h = 10000, k = 100 and
d = 0.1, the direct method has an expected number
of correct rule discoveries of 95.95, almost double the
59.72 value for the holdout method. In some cases, the
direct method outperformed the holdout method for a
factor of nearly 4. On the other hand, with m = 1000,
h = 50, k = 20 and d = 0.2, the holdout method was
superior, with a mean number of correct discoveries of
0.35, compared to the direct method’s 0.12. Thus the
results were even more mixed than in Webb’s papers.
At present, then, there appears to be no good away to
deal with the problem that Bonferroni-based approaches
simply cover too much ground. This leads to the the
alternative methodology proposed below.



2.5 Bootstrap/Resampling Methods The boot-
strap enables an analyst to perform a rich variety of
inference without making assumptions of a parameteric
distribution [3]. One especially valuable aspect of it is
that it handles dependencies among multiple test statis-
tics very well, again without making assumptions on the
structure of those dependencies.

The operation of the bootstrap is remarkably simple
in concept for such a powerful tool. One resamples
(with replacement) from the sample data, calculating
the given test statistics on each new set of resampled
data, and then rejects the hypothesis if the value of the
test statistic on the original data is in the upper-α tail
of the bootstrapped test statistics.

A good example (possibly the first) of the use of
the bootstrap for multiple inference in association rule
finding is in [6] and the authors’ previous work they cite
there.

A variation on the bootstrap is permutation testing.
In general, this involves actually exchanging the values
of one attribute for those of another, in a manner in
which distributions would be unchanged under the null
hypothesis. In the association rule finding context, [14]
exchanges data within a group of potential antecedents,
under the null hypothesis of no association.

3 A New Rule Finding Method Based on
Bootstrapped Confidence Intervals

3.1 Motivation A fundamental point here will be
the use of statistical confidence intervals rather than hy-
pothesis tests. (For brevity and to avoid confusion with
the association rule term confidence, let us write SCI for
“statistical confidence interval.”) The overriding goal is
to better empower the analyst, as follows.

Consider a common example from elementary
statistics courses, in which a new drug for treating hy-
pertension is to be compared with a placebo. Let µ1

and µ2 denote the population mean effectiveness for the
two drugs. The classical analysis would be to test the
hypothesis

H0 : µ1 = µ2(3.10)
For convenience in the discussion here, let’s suppose the
alternate hypothesis is H0 : µ1 6= µ2.

Another approach would be to form an SCI for the
difference µ1 − µ2. As is well known, one can use the
SCI as a mechanism for hypothesis testing; one decides
that the drug is effective if and only if the SCI does
not contain 0. However, the SCI provides the analyst
with much more information than this, in that it gives
a range for the value of the difference between the two
means. Say for example the SCI excludes 0 but is near
0. Here the analyst may decide that the drug should

not be used after all, as its limited effectiveness may be
outweighed by considerations such as cost or side effects.

In other words, one obtains much more information
from SCIs than from hypothesis testing. See [11] and
the references in [9] for extended discussions.

Thus the main purpose of this paper is to provide
the analyst, for each potential rule U ⇒ V , information
of the form, “The support of this rule is at least c,”
or “The confidence of this rule is at least d,” at a
given global α level. In this manner, the analyst
can browse freely through the potential rules, applying
his/her domain expertise. In light of that expertise,
the analyst may wish not to adopt a rule even if it
satisfies support and confidence threshholds minsupp
and minconf, and possibly adopt some other rules that
come close to meeting these criteria but do not formally
exceed these values. Or, it may be, for instance, that
the minsupp criterion is not quite met, but the minconf
level is greatly exceeded. This situation may be of high
interest to the analyst.

The point is to de-automate the rule-finding pro-
cess, again providing the flexibility needed to enable the
analyst’s domain expertise to be exploited. Given the
large number of potential rules, some kind of automatic
filtering would still be used, but in the end, the analyst
would still be in control of the process.

As mentioned, all of this must be done with proper
multiple inference controls. This will be done with a
novel use of bootstrapping.

3.2 Basics of the Proposed Methodology Let
θi, i = 1, ..., g be a collection of population values, with
estimators θ̂i calculated from sample data Y1, ..., Ym.

Our goal is to form aproximate one-sided SCIs, i.e.
of the form (c,∞), which hold simultaneously at level
1 − α. The statistical literature does include work on
use of the bootstrap for generating simultaneous SCIs.
However, a different approach will be taken here. Define

M = max
i

θ̂i

θi
(3.11)

M is not observable, since the θi are unknown. But
it still has a distribution, and let q denote the 1 − α
quantile of M, i.e. the value such that P (M ≤ q) =
1− α.

If it were known, the value of q would then provide
us with the desired simultaneous confidence intervals,
as follows:

1− α = P (M ≤ q)(3.12)

= P (θ̂i/θi ≤ q, i = 1, ..., g)

= P (θ̂i/q ≤ θi, i = 1, ..., g)



In other words, the intervals (θ̂i/q,∞) would be simul-
taneous SCIs for the θi.

The value of q is unknown, but we can estimate it
from our data, using the bootstrap. We generate v new
samples, each of size m, by sampling with replacement
from Y1, ..., Ym, and then calculate the new values of
the θ̂i on each of these new samples. This gives us
estimators θ̃ij , i = 1,...,g, j = 1,...,v. In analogy to
(3.11), we compute

M̃j = max
i

θ̃ij

θ̂i

(3.13)

for j = 1,...,v.
Intuitively, the values M̃j give us an approximation

to the distribution of M, and an extensive theory has
been developed that shows that the bootstrap indeed
works this way. We thus take our estimate of q, denoted
q̂, to be the kth-smallest value among M̃1, ...M̃v, where
k = b(1− α)vc.

In summary, then, our simultaneous SCIs for the θi

will be

(
θ̂i

q̂
,∞), i = 1, ..., g(3.14)

3.3 SCIs for Support and Confidence Values
Returning to the notation of Section 2.1, let W be a
collection of subsets of {1,...,r}, i.e. a collection of sets
of attributes. Suppose we wish to find simultaneous
SCIs for the population support values for all sets in
W.

We apply the methodology in Section 3.2 as follows.
The number m will be n; θi will be the population value
of the support for the ith set Ai in W, i.e. the population
mean of the product of all the attributes with indices in
Ai; and θ̂i is the corresponding sample mean. The SCIs
constructed for all the sets in W using (3.14) will hold
simultaneously at an approximate 1− α level.

The case of SCIs for confidence values follows the
same principle. Here we take our collection W to
consist of (antecedent, consequent) sets, and the θ̂i

are the sample confidence values, with θi being the
corresponding population quantities.

3.4 How Large Will q̂ Be? With multiple inference
procedures in general, the concern is that the methods
may lack power, which in the SCI context means wide
intervals. In (3.14), this corresponds to values of q̂ that
are much larger than 1. (With only one interval, the
value is 1.) The overriding question, then is whether q̂
would stay reasonably small in practice, near 1 or 2, as
opposed to increasing to a value so large as to be of little
use, say 10. The present section addresses this issue.

Clearly, as the size of W increases for fixed n, q will
tend to grow, as we are taking a maximum in (3.11)
over larger collections. Since our θi are proportions, the
maximum possible value of M in (3.11) is

1
miniεW θi

(3.15)

Putting these two points together, we see that the
deleterious effects of browsing through large collections
W, in terms of q, will be be acceptable in practice as
long as miniεW stays bounded away from 0. Since q̂
is an estimator of q, q̂ may not be too large even with
large collections W, as long as the sample size is large
enough for q̂ to be a fairly accurate estimator of q.

For fixed W, q̂ will tend to become smaller as n
increases. This is because V ar(q̂) decreases, so that
values of q̂ that are far above q become less likely.

Potential rules with very small support can also be
cause for concern in a slightly different sense. Consider
estimating the population support value for an itemset
U for which freq(U) = 1. The dataset investigated
below, for instance, has at least two such variables.
Since the bootstrap (in its basic version) samples with
replacement, that single transaction that contains U can
be chosen multiple times in a single bootstrap sample.
This would then lead to a large value of q̂.

In order to get a quantitative idea of the magnitudes
of these effects, the method proposed here was applied
to the Accidents data set [1]. In order to assess the ef-
fects of varying sample size n on q̂, the experiment con-
sidered only the first nr of n transactions, for different
values of nr. Then, to gauge the effects of increasingly
larger collections W, the experiment considered only the
first nv attributes, for varying values of nv.

Figure 1 shows the results, for support values of sin-
gleton sets. Though the curves are not monotonic (nor
should they be, as this is real data with heterogeneous
attributes), clearly the trend is downward in nr, as ex-
pected. Also, the larger attribute collections tended to
result in larger values of q̂. Nevertheless, the values were
mostly well under 2.0, a gratifying result.

Then, with (3.15) in mind, we filtered out all
attributes having a singleton support level of under 0.05.
(Recall from Section 2.3 that we can do this without
jeopardizing the statistical validity of our results.) The
results are shown in Figure 2. This did indeed reduce
the values of q̂, as surmised. Additional experiments,
not presented here, had similar results.

4 Discussion and Conclusions

The new method proposed here gives domain experts
the flexibility to fully exploit their expertise. It is
readily interpretable, and produces (asymptotically)



exact inference, as opposed to Bonferroni methods,
which tend to have low power.

The new method produced good results on the
Accident dataset investigated here. Our intuition that
it will work well even with large numbers of attributes
was confirmed in the context here, though settings with
much larger numbers still should be examined. Based on
the findings here, the proposed method should also work
well on datasets that are sparser than the Accident set,
as long as the attributes with very small support levels
are excluded.

This paper has also clarified the role of conditional
inference, and shed further light on Bonferroni methods,
providing further evidence that alternative methods
such as the one proposed here are needed. method, as
they different goals.

R code for the proposed method is available from
the author. As with all bootstrap methods, it is very
computationally intensive. For very large collections W,
it is recommended that a form of parallel R be used,
such as Rmpi or the pappl() function.
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Figure 1: Accidents Data, Full
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