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4.4 GLM: the Poisson Regression Model

Since in the Pima data (Section 4.3.2) the number of pregnancies is a count,
we might consider predicting it using Poisson regression.7 Here’s how we
can do this with glm():

> po i sout <− glm(NPreg ∼ . , data=pima , family=poisson )
> summary( po i sout )
. . .
C o e f f i c i e n t s :

Estimate Std . Error z va lue
( I n t e r c ep t ) 0 .2963661 0.1207149 2 .455
Gluc −0.0015080 0.0006704 −2.249
BP 0.0011986 0.0010512 1 .140
Thick 0.0000732 0.0013281 0 .055
In su l −0.0003745 0.0001894 −1.977
BMI −0.0002781 0.0027335 −0.102
Genet −0.1664164 0.0606364 −2.744
Age 0.0319994 0.0014650 21 .843
Diab 0.2931233 0.0429765 6 .821

Pr(>| z | )
( I n t e r c ep t ) 0 .01408 ∗
Gluc 0.02450 ∗
BP 0.25419
Thick 0.95604
In su l 0 .04801 ∗
BMI 0.91896
Genet 0 .00606 ∗∗
Age < 2e−16 ∗∗∗
Diab 9 .07 e−12 ∗∗∗
. . .

On the other hand, even if we believe that our count data follow a Poisson
distribution, there is no law dictating that we use Poisson regression, i.e.,
the model (4.10). As mentioned following that equation, the main motiva-
tion for using exp() in that model is to ensure that our regression function
is nonnegative, conforming to the nonnegative nature of Poisson random
variables. This is not unreasonable, but as noted in a somewhat different
context in Section 3.3.7, transformations — in this case, the use of exp()
— can produce distortions. Let’s try the “unorthodox” model, (4.11):

7It may seem unnatural to predict this, but as noted before, predicting any variable
may be useful if data on that variable may be missing.
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> quas iout <− glm(NPreg ∼ . , data=pima ,
family=quasi ( var i ance=”muˆ2” ) , start=rep ( 1 , 9 ) )

This “quasi” family is a catch-all option, specifying a linear model but here
allowing us to specify a Poisson variance function:

V ar(Y | X = t) = [µ(t)]2 (4.39)

with µ(t) = t�β. This is (4.11), not the standard Poisson regression model,
but worth trying anyway.

Well, then, which model performed better? As a rough, quick look, ignoring
issues of overfitting and the like, let’s consider R2. This quantity is not
calculated by glm(), but recall from Section 2.9.2 that R2 is the squared
correlation between the predicted and actual Y values. This quantity makes
sense for any regression situation, so let’s calculate it here:

> cor ( po i sout$f itted . va lues , po i sout$y )ˆ2
[ 1 ] 0 .2314203
> cor ( quas iout$f itted . va lues , quas iout$y )ˆ2
[ 1 ] 0 .3008466

The “unorthodox” model performed better than the “official” one! We
cannot generalize from this, but it does show again that one must use
transformations carefully.

4.5 Least-Squares Computation

A point made in Section 1.4 was that the regression function, i.e., the con-
ditional mean, is the optimal predictor function, minimizing mean squared
prediction error. This still holds in the nonlinear (and even nonparametric)
case. The problem is that in the nonlinear setting, the least-squares estima-
tor does not have a nice, closed-form solution like (2.28) for the linear case.
Let’s see how we can compute the solution through iterative approximation.

4.5.1 The Gauss-Newton Method

Denote the nonlinear model by

E(Y | X = t) = g(t,β) (4.40)


