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To the Instructor

Statistics is not a discipline like physics, chemistry or biology where we
study a subject to solve problems in the same subject. We study statistics
with the main aim of solving problems in other disciplines — C.R. Rao, one
of the pioneers of modern statistics

The function of education is to teach one to think intensively and to think
critically. Intelligence plus character — that is the goal of true education
— Dr. Martin Luther King, American civil rights leader

[In spite of] innumerable twists and turns, the Yellow River flows east —
Confucius, ancient Chinese philosopher

This text is designed for a junior/senior/graduate-level based course in
probability and statistics, aimed specifically at data science students (in-
cluding computer science). In addition to calculus, the text assumes some
knowledge of matrix algebra and rudimentary computer programming.

But why is this book different from all other books on math
probability and statistics?

Indeed. it is quite different from the others. Briefly:

e The subtitle of this book, Math + R + Data, immediately signals a
difference from other “math stat” books.

e Data Science applications, e.g. random graph models, power law dis-
tribution, Hidden Markov models, PCA, Google PageRank, remote
sensing, mixture distributions, neural networks, the Curse of Dimen-
sionality, and so on.

e Extensive use of the R language.
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The subtitle of this book, Math + R + Data, immediately signals that the
book follows a very different path. Unlike other “math stat” books, this
one has a strong applied emphasis, with lots of real data, facilitated by
extensive use of the R language.

The above quotations explain the difference further. First, this book is
definitely written from an applications point of view. Second, it pushes the
student to think critically about the how and why of statistics, and to “see
the big picture.”

e Use of real data, and early introduction of statistical issues:

The Rao quote at the outset of this Preface resonates strongly with
me. Though this is a “math stat” book — random variables, density
functions, expected values, distribution families, stat estimation and
inference, and so on — it takes seriously the Data Science theme
claimed in the title, Probability and Statistics for Data Science. A
book on Data Science, even a mathematical one, should make heavy
use of DATA!

This has implications for the ordering of the chapters. We bring in
statistics early, and statistical issues are interspersed thoughout the
text. Even the introduction to expected value, Chapter 3, includes
a simple prediction model, serving as a preview of what will come in
Chapter 15. Chapter 5, which covers the famous discrete paramet-
ric models, includes an example of fitting the power law distribution
to real data. This forms a prelude to Chapter 7, which treats sam-
pling distributions, estimation of mean and variance, bias and so on.
Then Chapter 8 covers general point estimation, using MLE and the
Method of Moments to fit models to real data. From that point on-
ward, real data is used extensively in every chapter.

The datasets are all publicly available, so that the instructor can delve
further into the data examples.

e Mathematically correct — yet highly intuitive:

The Confucius quote, though made long before the development of
formal statistical methods, shows that he had a keen intuition, an-
ticipating a fundamental concept in today’s world of data science —
data smoothing. Development of such strong intuition in our students
is a high priority of this book.

This is of course a mathematics book. All models, concepts and so
on are described precisely in terms of random variables and distri-
butions. In addition to calculus, matrix algebra plays an important
role. Optional Mathematical Complements sections at the ends of
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many chapters allow inquisitive readers to explore more sophisticated
material. The mathematical exercises range from routine to more
challenging.

On the other hand, this book is not about “math for math’s sake.”
In spite of being mathematically precise in description, it is definitely
not a theory book.

For instance, the book does not define probability in terms of sam-
ple spaces and set-theoretic terminology. In my experience, defining
probability in the classical manner is a major impediment to learning
the intuition underlying the concepts, and later to doing good applied
work. Instead, I use the intuitive, informal approach of defining prob-
ability in terms of long-run frequency, in essence taking the Strong
Law of Large Numbers as an axiom.

I believe this approach is especially helpful when explaining condi-
tional probability and expectation, concepts that students notoriously
have trouble with. Under the classical approach, students have trou-
ble recognizing when an exercise — and more importantly, an actual
application — calls for a conditional probability or expectation if
the wording lacks the explicit phrase given that. Instead, I have the
reader think in terms of repeated trials, “How often does A occur
among those times in which B occurs?”, which is easier to relate to
practical settings.

)

e Empowering students for real-world applications:

The word applied can mean different things to different people. Con-
sider for instance the interesting, elegant book for computer science
students by Mitzenmacher and Upfal [33]. It focuses on probability,
in fact discrete probability, and its intended class of applications is
actually the theory of computer science.

I instead focus on the actual use of the material in the real world;
which tends to be more continuous than discrete, and more in the
realm of statistics than probability. This is especially valuable, as Big
Data and Machine Learning now play a significant role in computer
and data science.

One sees this philosophy in the book immediately. Instead of starting
out with examples involving dice or coins, the book’s very first exam-
ples involve a model of a bus transportation system and a model of a
computer network. There are indeed also examples using dice, coins
and games, but the theme of the late Leo Breiman’s book subtitle [5],
“With a View toward Applications,” is never far away.
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If I may take the liberty of extending King’s quote, I would note that
today statistics is a core intellectual field, affecting virtually every-
one’s daily lives. The ability to use, or at the very least understand,
statistics is vital to good citizenship, and as an author I take this as
a mission.

e Use of the R Programming Language:

The book makes use of some light programming in R, for the purposes
of simulation and data analysis. The student is expected to have had
some rudimentary prior background in programming, say in one of
Python, C, Java or R, but no prior experience with R is assumed. A
brief introduction is given in the book’s appendix, and some further R
topics are interspered with the text as Computational Complements.

R is widely used in the world of statistics and data science, with
outstanding graphics/visualization capabilities, and a treasure chest
of more than 10,000 contributed code packages.

Readers who happen to be in computer science will find R to be
of independent interest from a CS perspective. First, R follows the
functional language and object-oriented paradigms: Every action is
implemented as a function (even ‘+’); side effects are (almost) always
avoided; functions are first-class objects; several different kinds of
class structures are offered. R also offers various interesting metapro-
gramming capabilities. In terms of programming support, there is the
extremely popular RStudio IDE, and for the “hard core” coder, the
Emacs Speaks Statistics framework. Most chapters in the book have
Computational Complements sections, as well as a Computational
and Data Problems portion in the exercises.

Chapter Outline:

Part I, Chapters 1 through 6: These introduce probability, Monte Carlo
simulation, discrete random variables, expected value and variance, and
parametric families of discrete distributions.

Part II, Chapters 7 through 10: These then introduce statistics, such as
sampling distributions, MLE, bias, Kolmogorov-Smirnov and so on, illus-
trated by fitting gamma and beta density models to real data. Histograms
are viewed as density estimators, and kernel density estimation is briefly
covered. This is followed by material on confidence intervals and signifi-
cance testing.

Part III, Chapters 11 through 17: These cover multivariate analysis in
various aspects, such as multivariate distribution, mixture distributions,
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PCA /log-linear model, dimension reduction, overfitting and predictive an-
alytics. Again, real data plays a major role.

Coverage Strategies:

The book can be comfortably covered in one semester. If a more leisurely
pace is desired, or one is teaching under a quarter system, the material has
been designed so that some parts can be skipped without loss of continuity.
In particular, a more statistics-oriented course might omit the material on
Markov chains, while a course focusing more on machine learning may wish
to retain this material (e.g. for Hidden Markov models). Individual sections
on specialty topics also have been written so as not to create obstacles later
on if they are skipped.

The Chapter 11 on multivariate distributions is very useful for data science,
e.g. for its relation to clustering. However, instructors who are short on time
or whose classes may not have a strong background in matrix algebra may
safely skip much of this material.

A Note on Typography

In order to help the reader keep track of the various named items, I use
math italics for mathematical symbols and expressions, and bold face for
program variable and function names. I include R package names for the
latter, except for those beginning with a capital letter.

Thanks:

The following, among many, provided valuable feedback for which I am very
grateful: Ibrahim Ahmed; Ahmed Ahmedin; Stuart Ambler; Earl Barr;
Benjamin Beasley; Matthew Butner; Vishal Chakraborti, Michael Clifford;
Dipak Ghosal; Noah Gift; Laura Matloff; Nelson Max, Deep Mukhopad-
hyay, Connie Nguyen, Jack Norman, Richard Oehrle, Michael Rea, Sana
Vaziri, Yingkang Xie, and Ivana Zetko. My editor, John Kimmel, is always
profoundly helpful. And as always, my books are also inspired tremen-
dously by my wife Gamis and daughter Laura.



XXX CONTENTS



To the Reader

I took a course in speed reading, and read War and Peace in 20 minutes.
It’s about Russia — comedian Woody Allen

I learned very early the difference between knowing the name of something
and knowing something — Richard Feynman, Nobel laureate in physics

Give me siz hours to chop down a tree and I will spend the first four sharp-
ening the axe — Abraham Lincoln

This is NOT your ordinary math or programming book.

In order to use this material in real-world applications, it’s crucial to un-
derstand what the math means, and what the code actually does.

In this book, you will often find several consecutive paragraphs, maybe even
a full page, in which there is no math, no code and no graphs. Don’t skip
over these portions of the book! They may actually be the most important
ones in the book, in terms of your ability to apply the material in the real
world.

And going hand-in-hand with this point, mathematical intuition is key. As
you read, stop and think about the intuition underlying those equations.

A closely related point is that the math and code complement each other.
Each will give you deeper insight in the other. It may at first seem odd
that the book intersperses math and code, but sooon you will find their
interaction to be quite helpful to your understanding of the material.

The “Plot”

Think of this book as a movie. In order for the “plot” to work well, we will
need preparation. This book is aimed at applications to Data Science, so
the ultimate destination of the “plot” is statistics and predictive analytics.
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The foundation for those fields is probability, so we lay the foundation first
in Chapters 1 through 6. We’ll need more probability later — Chapters 9
and 11 — but in order to bring in some “juicy” material into the “movie” as
early as possible, we introduce statistics, especially analysis of real DATA,
in Chapters 7 and 8 at this early stage.

The final chapter, on Markov chains, is like a “sequel” to the movie. This
sets up some exciting Data Science applications such as Hidden Markov
Models and Google’s PageRank search engine.



