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8.4.2 Example: BMI Data

From Section 6.7.4.1, we know that for a gamma-distributed X,

EX = r/λ (8.14)

and

V ar(X) = r/λ2 (8.15)

In MM, we simply replace population values by sample estimates in the
above equations, yielding

X = r̂/λ̂ (8.16)

and

s2 = r̂/λ̂2 (8.17)

Dividing the first equation by the second, we obtain

λ̂ = X/s2 (8.18)

and thus from the first equation,

r̂ = Xλ̂ = X
2

/s2 (8.19)

Let’s see how well the model fits, at least visually:

xb <- mean(bmi)

s2 <- var(bmi)

lh <- xb/s2

ch <- xb^2/s2

hist(bmi ,freq=FALSE ,breaks =20)

curve(dgamma(x,ch ,lh),0,70,add=TRUE)

The plot is shown in Figure 8.5. Visually, the fit looks fairly good. Be
sure to keep in mind the possible sources of discrepancy between the fitted
model and the histogram:
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• Sampling variation: We are of course working with sample data, not
the population. It may be that with a larger sample, the discrepancy
may be lesser.

• Model bias: As the quote from George Box reminds us, a model is just
that, a simplying model of reality. Most models are imperfect, e.g.
the assumed massless, frictionless string from physics computations,
but are often good enough for our purposes.

• Choice of number of bins: The parametric model here might fit even
better with a different choice than our 20 for the number of bins.

8.4.3 The Method of Maximum Likelihood

To see how MLE works, consider the following game. I toss a coin until I
accumulate r heads. I don’t tell you what value I’ve chosen for r, but I do
tell you K, the number of tosses I needed. You then must guess the value
of r. Well, K has a negative binomial distribution (Section 5.4.3), so

P (K = u) =

(
u− 1

r − 1

)
0.5u, u = r, r + 1, ... (8.20)

Say I tell you K = 7. Then what you might do is find the value of r that
maximizes

(
6

r − 1

)
0.57 (8.21)

You are asking, “What value of r would have made our data (K = 7) most
likely?” Trying r = 1, 2, ..., 7, one finds that r = 4 maximizes (8.21), so we
would take that as our guess.5

Now consider our parametric density setting. For “likelihood” with conti-
nous data, we don’t have probabilities, but it is defined in terms of densities,
as follows.

5By the way, here is how the Method of Moments approach would work here. For the
negative binomial distribution it is known that E(K) = r/p, where p is the probability
of “success,” in this setting meaning heads. So E(K) = 2r. Under MM, we would set
K = 2r̂, where the left-hand side is the average of all values of K in our data. We only
did the “experiment” once, so K = 6 and we guess r to be 3.
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Say g(t, θ) is our parametric density, with θ being the parameter (possibly
vector-valued). The likelihood is defined as

L = Πn

i
g(Xi, θ) (8.22)

We will take θ̂ to be the value that maximizes L, but it’s usually easier to
equivalently maximize

l = logL = Σn

i
log g(Xi, θ) (8.23)

Typically the equations have no closed-form solution, and thus must be
solved numerically. R’s mle() function does this for us.

8.4.4 Example: Humidity Data

This is from the Bike Sharing dataset on the UC Irvine Machine Learning
Repository [12]. We are using the day data, one column of which is for
humidity.

Since the humidity values are in the interval (0,1), a natural candidate for
a parametric model would be a beta distribution (Section 6.7.5). Here is
the code and output:

> bike <- read.csv(’day.csv’,header=TRUE)

> hum <- bike$hum

> hum <- hum[hum > 0]

> library(stats4)

> ll <- function(a,b)

+ sum(-log(dbeta(hum ,a,b)))

> z <- mle(minuslogl=ll ,start=list(a=1,b=1))

> z

...

Coefficients:

a b

6.439144 3.769841

The R function mle() has two main arguments. The first specifies a func-
tion that computes the log-likelihood, our function ll() here. The argu-
ments to that function must be the parameters, which I have named a and
b for “alpha” and “beta.”
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This is the covariance matrix, with variances on the diagonal and covari-
ances in the off-diagonal slots. So the standard error of α̂ is

√
0.11150334,

or about 0.334.

8.5 MM vs. MLE

MM and MLE are both powerful techniques, but which is better? On the
one hand, MLEs can be shown to asymptotically optimal (smallest standard
errors). On the other hand, MLEs require more assumptions. As with many
things in data science, the best tool may depend on the setting.

8.6 Assessment of Goodness of Fit

In our examples above, we can do a visual assessment of how well our
model fits the data, but it would be nice to have a quantitative measure of
goodness of fit.

The classic assessment tool is the Chi-Squared Goodness of Fit Test. It is
one of the oldest statistical methods (1900!), and thus in wide use. But
Professor Box’s remark suggests that this procedure is not the best way to
gauge model fit, as the test answers the yes–or–no question, e.g. “Is the
population distribution exactly gamma?” — of dubious relevance, given
that we know a priori that the answer is No.6

A more useful measure is the Kolmogorov-Smirnov (KS) statistic. It ac-
tually gives us the size of the discrepancy between the fitted model family
and the true population distribution. To make matters concrete, say we
are fitting a beta model, with the humidity data above..

K-S is based on cdfs. Of course, the pbeta() function gives us the cdf for
the beta family, but we also need a model-free estimate of FX , the true
population cdf of X. For the latter, we use the empirical cdf of X, defined
as

F̂X(t) =
M(t)

n
(8.24)

where M(t) is simply a count of the number of Xi that are ≤ t. The R
function ecdf() calculates this for us:

6This is a problem with significance tests in general, to be discussed in Chapter 10.




