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Returning to our original claim, write

PY=Y)=E|PY =Y | X)} (1.53)

In that inner probability, “p” is

PY =1 X) = u(X) (1.54)

which completes the proof.

1.19.5 Some Properties of Conditional Expectation

Since the regression function is defined as a conditional expected value,
as in (1.3), for mathematical analysis we’ll need some properties. First, a
definition.

1.19.5.1 Conditional Expectation As a Random
Variable

For any random variables U and V with defined expectation, either of which
could be vector-valued, define a new random variable W, as follows. First
note that the conditional expectation of V' given U =t is a function of ¢,

pt) =E(V | U=t (1.55)

This is an ordinary function, just like, say, vf. But we can turn that
ordinary function into a random variable by plugging in a random variable,
say @, for t: R =+/Q is a random variable. Thinking along these lines, we
define the random wvariable version of conditional expectation accordingly.
In the function u(t) in (1.55), we plug in U for ¢:

W = E(V|U) = u(U) (1.56)

This W is a random variable. As a simple example, say we choose a number
U at random from the numbers 1 through 5. We then randomly choose a
second number V', from the numbers 1 through U. Then

141t

pt)=EV|U=t)=—

(1.57)
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We now form a new random variable W = (1 + U)/2.

And, since W is a random variable, we can talk of its expected value, which
turns out to be an elegant result:

1.19.5.2 The Law of Total Expectation

A property of conditional expected value, proven in many undergraduate
probability texts, is

E(V)=EW = E[E(V | U)) (1.58)

The foreboding appearance of this equation belies the fact that it is actually
quite intuitive, as follows. Say you want to compute the mean height of all
people in the U.S., and you already have available the mean heights in each
of the 50 states. You cannot simply take the straight average of those state
mean heights, because you need to give more weight to the more populous
states. In other words, the national mean height is a weighted average of
the state means, with the weight for each state being its proportion of the
national population.

In (1.58), this corresponds to having V as height and U as state. State
coding is an integer-valued random variable, ranging from 1 to 50, so we
have

EV = E[EV |U)] (1.59)
= EW (1.60)

50
= Y PWU=1i)E(V|U=i) (1.61)

i=1

The left-hand side, EV, is the overall mean height in the nation; E(V | U =
1) is the mean height in state ¢; and the weights in the weighted average
are the proportions of the national population in each state, P(U = ).

Not only can we look at the mean of W, but also its variance. By using the
various familiar properties of mean and variance, one can derive a similar
relation for variance:
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1.19.5.3 Law of Total Variance

For scalar V,

Var(V) = E[Var(V|U)] + Var[E(V|U)] (1.62)

One might initially guess that we only need the first term. To obtain the
national variance in height, we would take the weighted average of the state
variances. But this would not take into account that the mean heights vary
from state to state, thus also contributing to the national variance in height,
hence the second term.

This is proven in Section 2.12.8.3.

1.19.5.4 Tower Property

Now consider conditioning on two variables, say U; and Us. One can show
that

E[E(V|U1,Uz) | U] = E(V | Uh) (1.63)

Here is an intuitive interpretation of that in the height example above.
Take V, U; and Us; to be height, state and gender, respectively, so that
E(V|Uy,Us) is the mean height of all people in a certain state and of a
certain gender. If we then take the mean of all these values for a certain
state — i.e. take the average of the two gender-specific means in the state
— we get the mean height in the state without regard to gender.

Again, note that we take the straight average of the two gender-specific
means, because the two genders have equal proportions. If, say, Us were
race instead of gender, we would need to compute a weighted average of the
race-specific means, with the weights being the proportions of the various
races in the given state.

This is proven in Section 7.8.1.

1.19.5.5 Geometric View

There is an elegant way to view all of this in terms of abstract vector spaces
— (1.58) becomes the Pythagorean Theorem! — which we will address later
in Mathematical Complements Sections 2.12.8 and 7.8.1.
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So, we see that B converges to

B BOCY) = (BN BOEXD) = (SO0 B3 = 9
2.114

[t

2.12.7 Biased Nature of S

It was stated in Section 2.7.2 that S, even with the n — 1 divisor, is a biased
estimator of 7, the population standard deviation. We’ll derive that here.

0 < Var(S) (2.115)
= E(S%) — (ES)? (2.116)
n’ — (ES)? (2.117)

since S2 is an unbiased estimator of n2. So,

ES <7 (2.118)

2.12.8 The Geometry of Conditional Expectation

Readers with a good grounding in vector spaces may find the material in
this section helpful to their insight. It is recommended that the reader
review Section 1.19.5 before continuing.'?

2.12.8.1 Random Variables As Inner Product Spaces

Consider the set of all scalar random variables U defined in some probability
space that have finite second moment, i.e. E(U?) < co. This forms a linear
space: The sum of two such random variables is another random variable
with finite second moment, as is a scalar times such a random variable.

121t should be noted that the treatment here will not be fully mathematically rigorous.
For instance, we bring in projections below, without addressing the question of the
conditions for their existence.
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We can define an inner product on this space. For random variables S and
T in this space, define

(S,T) = E(ST) (2.119)
This defines the norm
1S]] = (S, 9)'/2 = /E(S?) (2.120)
So, if ES =0, then
ISl = /Var(S) (2.121)

Many properties for regression analysis can be derived quickly from this
vector space formulation. Let’s start with (2.82).

The famous Cauchy-Schwartz Inequality for inner product spaces states that
for any vectors x and y, we have

@ o) < l2[| [lyll (2.122)

It is left as an exercise to the reader to show that this implies (2.82).

2.12.8.2 Projections

Inner product spaces also have the notion of a projection. Suppose we have
an inner product space V, and subspace W. Then for any vector x, the
projection z of  onto W is defined to be the closest vector to = in W. An

”

important property is that we have a “right triangle,” i.e.

(z,2—2)=0 (2.123)

We say that z and = — z are orthogonal. And the Pythagorean Theorem
holds:

llz|* = [[2]]* + [l — 22 (2.124)
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2.12.8.3 Conditional Expectations As Projections

In regression terms, the discussion in Section 1.19.3 shows that the regres-
sion function, E(Y | X) = p(X) has the property that

u(X) = argmin, B[(Y — g(X))?] = argmin, ||V — g(X)[I>  (2.125)

as g ranges over all functions of X. Therefore, by definition, p(X) is the
projection of Y onto the subspace consisting of all random variables with
finite variance that are functions of X. This view can be very useful.

We can also use (2.124) to derive the Law of Total Variance, (1.62). For
convenience in present notation, rewrite that equation as

Var(Y) = E[Var(Y|X)] + Var[E(Y|X)] (2.126)

The derivation will be less cluttered if we restrict attention to the case
EY = 0. (For the general case, define a new random variable W =Y — EY,
and apply the mean-0 result, left as an exercise for the reader.) Note that
by the Law of Total Expectation (Section 1.19.5.2), this implies the pu(X)
also has mean 0.

Then (2.124) and (2.121) say that
Var(Y) = E[u(X)*]+ E[(Y — u(X))?] (2.127)
Recalling that Eu(X) = 0, the first term in (2.127) is
Varju(X)] = Var[E(Y| X)) (2.128)

which is exactly the second term in (1.62).

Now rewrite the second term in (2.127) using (1.58):

ENY -u(X))?] = E{E[(Y —u(X))* | X]} (2.129)
= E[Var(Y|X)] (2.130)

And, that last expression is exactly the first term in (1.62)! So, we are done
with the derivation.
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2.12.9 Predicted Values and Error Terms Are Uncor-
related

Assume a random-X context, and take z in (2.123) to be Y, so in that
equation

2= pu(X) (2.131)

and thus

E[u(X)(Y - p(X))] = 0 (2.132)

In other words, our prediction p(X) is uncorrelated with our prediction
error, Y — pu(X).

The above concerns the population level, but a similar argument can be
made at the sample level for linear models. Here we will assume a fixed-X
model (conditioning on X in the random-X case), and once again use the
notation of Section 2.4.2.

Define

G=Y, - X3 (2.133)

Also define € to be the vector of the €;.

The claim is then that the correlation between €; and Bj is 0 for any 7 and
j. Again, a vector space argument can be made. In this case, take the full
vector space to be R™, the space in which D roams, and the subspace will
be that spanned by the columns of A.

The vector AB is in that subspace, and because b = B minimizes (2.25), AB
is then _the projection of D onto that subspace. Again, that makes D — Aj
and AS orthogonal, i.e.

FAB=(D—AB)YAB=0 (2.134)

Since this must _hold for all A, we see that each €; is uncorrelated with any
component of 3.



